Schweighofer Lukas, Eschelmüller Bernd, Fröhlich Katja, Pfleging Wilhelm, Pichler Franz
Virtual Vehicle Research GmbH, Inffeldgasse 21a, 8010 Graz, Austria.
Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria.
Nanomaterials (Basel). 2022 May 6;12(9):1574. doi: 10.3390/nano12091574.
An electrochemical multi-scale model framework for the simulation of arbitrarily three-dimensional structured electrodes for lithium-ion batteries is presented. For the parameterisation, the electrodes are structured via laser ablation, and the model is fit to four different, experimentally electrochemically tested cells. The parameterised model is used to optimise the parameters of three different pattern designs, namely linear, gridwise, and pinhole geometries. The simulations are performed via a finite element implementation in two and three dimensions. The presented model is well suited to depict the experimental cells, and the virtual optimisation delivers optimal geometrical parameters for different C-rates based on the respective discharge capacities. These virtually optimised cells will help in the reduction of prototyping cost and speed up production process parameterisation.
提出了一种用于锂离子电池任意三维结构电极模拟的电化学多尺度模型框架。为了进行参数化,通过激光烧蚀对电极进行结构化处理,并将模型与四个不同的、经过实验电化学测试的电池进行拟合。参数化模型用于优化三种不同图案设计的参数,即线性、网格状和针孔几何形状。通过二维和三维的有限元实现进行模拟。所提出的模型非常适合描述实验电池,并且虚拟优化基于各自的放电容量为不同的C倍率提供了最佳几何参数。这些虚拟优化的电池将有助于降低原型制作成本并加快生产过程参数化。