Suppr超能文献

基于 ARIMAX 模型的大气污染和气象因素与肺结核发病率关系的建模和预测:中国宁波的一项生态学研究。

Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China.

机构信息

School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.

Center for Health Economics, School of Economics, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China.

出版信息

Int J Environ Res Public Health. 2022 Apr 28;19(9):5385. doi: 10.3390/ijerph19095385.

Abstract

The autoregressive integrated moving average with exogenous regressors (ARIMAX) modeling studies of pulmonary tuberculosis (PTB) are still rare. This study aims to explore whether incorporating air pollution and meteorological factors can improve the performance of a time series model in predicting PTB. We collected the monthly incidence of PTB, records of six air pollutants and six meteorological factors in Ningbo of China from January 2015 to December 2019. Then, we constructed the ARIMA, univariate ARIMAX, and multivariate ARIMAX models. The ARIMAX model incorporated ambient factors, while the ARIMA model did not. After prewhitening, the cross-correlation analysis showed that PTB incidence was related to air pollution and meteorological factors with a lag effect. Air pollution and meteorological factors also had a correlation. We found that the multivariate ARIMAX model incorporating both the ozone with 0-month lag and the atmospheric pressure with 11-month lag had the best performance for predicting the incidence of PTB in 2019, with the lowest fitted mean absolute percentage error (MAPE) of 2.9097% and test MAPE of 9.2643%. However, ARIMAX has limited improvement in prediction accuracy compared with the ARIMA model. Our study also suggests the role of protecting the environment and reducing pollutants in controlling PTB and other infectious diseases.

摘要

自回归综合移动平均外生回归模型(ARIMAX)在肺结核(PTB)中的研究仍然很少。本研究旨在探讨在预测 PTB 时,纳入空气污染和气象因素是否可以提高时间序列模型的性能。我们收集了 2015 年 1 月至 2019 年 12 月中国宁波的每月肺结核发病率、六种空气污染物和六种气象因素的记录。然后,我们构建了 ARIMA、单变量 ARIMAX 和多变量 ARIMAX 模型。ARIMAX 模型纳入了环境因素,而 ARIMA 模型则没有。经过预白化后,交叉相关分析表明,肺结核发病率与具有滞后效应的空气污染和气象因素有关。空气污染和气象因素之间也存在相关性。我们发现,包含臭氧 0 个月滞后和大气压 11 个月滞后的多变量 ARIMAX 模型在预测 2019 年 PTB 发病率方面表现最佳,拟合平均绝对百分比误差(MAPE)最低为 2.9097%,测试 MAPE 为 9.2643%。然而,与 ARIMA 模型相比,ARIMAX 对预测精度的改善有限。我们的研究还表明,保护环境和减少污染物在控制肺结核和其他传染病方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f6b/9105987/46e4da9b7e35/ijerph-19-05385-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验