Suppr超能文献

基于内镜成像的卷积神经网络在嗜酸性食管炎诊断中的应用。

Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging.

作者信息

Okimoto Eiko, Ishimura Norihisa, Adachi Kyoichi, Kinoshita Yoshikazu, Ishihara Shunji, Tada Tomohiro

机构信息

Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo 693-8501, Japan.

Health Center, Shimane Environment and Health Public Corporation, Matsue 690-0012, Japan.

出版信息

J Clin Med. 2022 Apr 30;11(9):2529. doi: 10.3390/jcm11092529.

Abstract

Subjective symptoms associated with eosinophilic esophagitis (EoE), such as dysphagia, are not specific, thus the endoscopic identification of suggestive EoE findings is quite important for facilitating endoscopic biopsy sampling. However, poor inter-observer agreement among endoscopists regarding diagnosis has become a complicated issue, especially with inexperienced practitioners. Therefore, we constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network (CNN) and evaluated its performance as a diagnostic utility. A CNN-based CAD system was developed based on ResNet50 architecture. The CNN was trained using a total of 1192 characteristic endoscopic images of 108 patients histologically proven to be in an active phase of EoE (≥15 eosinophils per high power field) as well as 1192 normal esophagus images. To evaluate diagnostic accuracy, an independent test set of 756 endoscopic images from 35 patients with EoE and 96 subjects with a normal esophagus was examined with the constructed CNN. The CNN correctly diagnosed EoE in 94.7% using a diagnosis per image analysis, with an overall sensitivity of 90.8% and specificity of 96.6%. For each case, the CNN correctly diagnosed 37 of 39 EoE cases with overall sensitivity and specificity of 94.9% and 99.0%, respectively. These findings indicate the usefulness of CNN for diagnosing EoE, especially for aiding inexperienced endoscopists during medical check-up screening.

摘要

与嗜酸性粒细胞性食管炎(EoE)相关的主观症状,如吞咽困难,并不具有特异性,因此内镜下识别提示EoE的表现对于促进内镜活检采样非常重要。然而,内镜医师之间在诊断方面的观察者间一致性较差已成为一个复杂的问题,尤其是对于经验不足的从业者。因此,我们构建了一个使用卷积神经网络(CNN)的计算机辅助诊断(CAD)系统,并评估了其作为诊断工具的性能。基于ResNet50架构开发了一个基于CNN的CAD系统。该CNN使用总共1192张特征性内镜图像进行训练,这些图像来自108例经组织学证实处于EoE活动期(每高倍视野≥15个嗜酸性粒细胞)的患者以及1192张正常食管图像。为了评估诊断准确性,使用构建的CNN对来自35例EoE患者的756张内镜图像和96例食管正常受试者的独立测试集进行了检查。通过对每张图像进行分析诊断,CNN对EoE的正确诊断率为94.7%,总体敏感性为90.8%,特异性为96.6%。对于每个病例,CNN正确诊断了39例EoE病例中的37例,总体敏感性和特异性分别为94.9%和99.0%。这些发现表明CNN在诊断EoE方面的有用性,特别是在体检筛查期间帮助经验不足的内镜医师。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验