Mishnev Maxim, Korolev Alexander, Ekaterina Bartashevich, Dmitrii Ulrikh
Department of Building Construction and Structures, South Ural State University, 454080 Chelyabinsk, Russia.
Research Laboratory of Multiscale Modelling of Multicomponent Functional Materials, South Ural State University, 454080 Chelyabinsk, Russia.
Polymers (Basel). 2022 Apr 22;14(9):1712. doi: 10.3390/polym14091712.
The work is devoted to the prediction and experimental research of the elastic bending modulus of glass-reinforced plastics with an epoxy matrix on anhydride hardener reinforced with different glass fabrics. Experimental studies have been carried out to assess the effect of thermal relaxation of the polymer matrix structure due to long-term exposure to elevated temperatures (above the glass transition temperature of the polymer matrix) on the GRP elastic bending modulus at temperatures ranging from 25 to 180 °C. It has been shown that due to the thermal relaxation of the polymer matrix structure, the GRP modulus increases significantly at temperatures above 110 °C and decreases slightly at lower temperatures. Using a multiscale simulation based on a combination of the finite-element homogenization method in the Material Designer module of the ANSYS software package and three-point bending simulation in the ANSYS APDL module, the elastic modulus of FRP was predicted concerning the temperature, its averaged structural properties, and thermal relaxation of the polymer matrix structure. We have also carried out the prediction of the temperature dependences of the modulus of elasticity of glass-reinforced plastics on different types of glass fabrics in the range from 25 to 200 °C by using the entropic approach and the layered model.
这项工作致力于对以酸酐固化剂增强、采用不同玻璃织物的环氧基体玻璃增强塑料的弹性弯曲模量进行预测和实验研究。已开展实验研究,以评估由于长期暴露于高温(高于聚合物基体的玻璃化转变温度)导致聚合物基体结构的热松弛对玻璃增强塑料在25至180°C温度范围内的弹性弯曲模量的影响。结果表明,由于聚合物基体结构的热松弛,玻璃增强塑料的模量在110°C以上的温度下显著增加,而在较低温度下略有下降。使用基于ANSYS软件包的Material Designer模块中的有限元均匀化方法和ANSYS APDL模块中的三点弯曲模拟相结合的多尺度模拟,预测了玻璃纤维增强塑料的弹性模量与温度、其平均结构性能以及聚合物基体结构的热松弛之间的关系。我们还通过熵方法和分层模型对25至200°C范围内不同类型玻璃织物的玻璃增强塑料的弹性模量的温度依赖性进行了预测。