Suppr超能文献

亚马逊相机陷阱数据集:一组通过相机陷阱在亚马逊森林中记录的哺乳动物、鸟类和爬行动物物种的数据。

AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest.

作者信息

Antunes Ana Carolina, Montanarin Anelise, Gräbin Diogo Maia, Dos Santos Monteiro Erison Carlos, de Pinho Fernando Ferreira, Alvarenga Guilherme Costa, Ahumada Jorge, Wallace Robert B, Ramalho Emiliano Esterci, Barnett Adrian Paul Ashton, Bager Alex, Lopes Alexandre Martins Costa, Keuroghlian Alexine, Giroux Aline, Herrera Ana María, de Almeida Correa Ana Paula, Meiga Ana Yoko, de Almeida Jácomo Anah Tereza, de Barros Barban Ananda, Antunes André, de Almeida Coelho André Giovanni, Camilo André Restel, Nunes André Valle, Dos Santos Maroclo Gomes Andréa Cristina, da Silva Zanzini Antônio Carlos, Castro Arlison Bezerra, Desbiez Arnaud Léonard Jean, Figueiredo Axa, de Thoisy Benoit, Gauzens Benoit, Oliveira Brunno Tolentino, de Lima Camilla Angélica, Peres Carlos Augusto, Durigan Carlos César, Brocardo Carlos Rodrigo, da Rosa Clarissa Alves, Zárate-Castañeda Claudia, Monteza-Moreno Claudio M, Carnicer Cleide, Trinca Cristiano Trape, Polli Daiana Jeronimo, da Silva Ferraz Daniel, Lane Daniel F, da Rocha Daniel Gomes, Barcelos Daniele Cristina, Auz David, Rosa Dian Carlos Pinheiro, Silva Diego Afonso, Silvério Divino Vicente, Eaton Donald P, Nakano-Oliveira Eduardo, Venticinque Eduardo, Junior Elildo Carvalho, Mendonça Eloisa Neves, Vieira Emerson Monteiro, Isasi-Catalá Emiliana, Fischer Erich, Castro Erika Paula, Oliveira Erison Gomes, de Melo Fabiano Rodrigues, de Lima Muniz Fábio, Rohe Fabio, Baccaro Fabrício Beggiato, Michalski Fernanda, Paim Fernanda Pozzan, Santos Fernanda, Anaguano Fernando, Palmeira Francesca Belem Lopes, da Silva Reis Francielly, Aguiar-Silva Francisca Helena, de Avila Batista Gabriel, Zapata-Ríos Galo, Forero-Medina German, Neto Gilson De Souza Ferreira, Alves Giselle Bastos, Ayala Guido, Pedersoli Gustavo Henrique Prado, El Bizri Hani R, do Prado Helena Alves, Mozerle Hugo Borghezan, Costa Hugo C M, Lima Ivan Junqueira, Palacios Jaime, de Resende Assis Jasmine, Boubli Jean P, Metzger Jean Paul, Teixeira Jéssica Vieira, Miranda João Marcelo Deliberador, Polisar John, Salvador Julia, Borges-Almeida Karen, Didier Karl, de Lima Pereira Karla Dayane, Torralvo Kelly, Gajapersad Krisna, Silveira Leandro, Maioli Leandro Uceli, Maracahipes-Santos Leonardo, Valenzuela Leonor, Benavalli Letícia, Fletcher Lydia, Paolucci Lucas Navarro, Zanzini Lucas Pereira, da Silva Luciana Zago, Rodrigues Luiz Cláudio Ribeiro, Benchimol Maíra, Oliveira Marcela Alvares, Lima Marcela, da Silva Marcélia Basto, Dos Santos Junior Marcelo Augusto, Viscarra Maria, Cohn-Haft Mario, Abrahams Mark Ilan, Benedetti Maximiliano Auguto, Marmontel Miriam, Hirt Myriam R, Tôrres Natália Mundim, Junior Orlando Ferreira Cruz, Alvarez-Loayza Patricia, Jansen Patrick, Prist Paula Ribeiro, Brando Paulo Monteiro, Perônico Phamela Bernardes, do Nascimento Leite Rafael, Rabelo Rafael Magalhães, Sollmann Rahel, Beltrão-Mendes Raone, Ferreira Raphael Augusto Foscarini, Coutinho Raphaella, da Costa Oliveira Regison, Ilha Renata, Hilário Renato Richard, Pires Ricardo Araújo Prudente, Sampaio Ricardo, da Silva Moreira Roberto, Botero-Arias Robinson, Martinez Rodolfo Vasquez, de Albuquerque Nóbrega Rodrigo Affonso, Fadini Rodrigo Ferreira, Morato Ronaldo G, Carneiro Ronaldo Leal, Almeida Rony Peterson Santos, Ramos Rossano Marchetti, Schaub Roxane, Dornas Rubem, Cueva Rubén, Rolim Samir, Laurindo Samuli, Espinosa Santiago, Fernandes Taís Nogueira, Sanaiotti Tania Margarete, Alvim Thiago Henrique Gomide, Dornas Tiago Teixeira, Piña Tony Enrique Noriega, Caetano Andrade Victor Lery, Santiago Wagner Tadeu Vieira, Magnusson William E, Campos Zilca, Ribeiro Milton Cezar

机构信息

Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.

出版信息

Ecology. 2022 Sep;103(9):e3738. doi: 10.1002/ecy.3738. Epub 2022 Jul 18.

Abstract

The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data.

摘要

亚马逊森林拥有地球上最高的生物多样性。然而,关于亚马逊脊椎动物多样性的信息仍然不足,且分散在已发表的、经过同行评审的文献、灰色文献以及未发表的原始数据中。相机陷阱是一种有效的脊椎动物非侵入性调查方法,适用于不同时空尺度。在本研究中,我们整理并规范了来自亚马逊不同地区的相机陷阱记录,以汇编该地区有史以来最广泛的哺乳动物、鸟类和爬行动物物种清单数据集。完整的数据集包含从八个国家(巴西、玻利维亚、哥伦比亚、厄瓜多尔、法属圭亚那、秘鲁、苏里南和委内瑞拉)亚马逊地区的调查中收集到的317个物种(185种鸟类、119种哺乳动物和13种爬行动物)的154,123条记录。每个分类单元中记录最频繁的物种分别是:哺乳动物:低地斑纹马岛猬(11,907条记录);鸟类:安第斯冠伞鸟(3713条记录);爬行动物:南美蜥(716条记录)。本数据论文中详细的信息为不同时空尺度的新生态研究提供了机会,有助于更准确地评估栖息地丧失、破碎化、气候变化以及其他人类介导的动物群减少过程对世界上最重要且受威胁的热带环境之一的影响。该数据集不受版权限制;在出版物中使用其数据时请引用本数据论文,我们还要求研究人员和教育工作者告知我们他们如何使用这些数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验