Suppr超能文献

CamTrapAsia:来自 239 项相机陷阱研究的热带森林脊椎动物群落数据集。

CamTrapAsia: A dataset of tropical forest vertebrate communities from 239 camera trapping studies.

机构信息

Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.

School of the Environment, University of Queensland, Brisbane, Queensland, Australia.

出版信息

Ecology. 2024 Jun;105(6):e4299. doi: 10.1002/ecy.4299. Epub 2024 Apr 22.

Abstract

Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.

摘要

有关热带亚洲脊椎动物的信息传统上较为匮乏,尤其是关于栖息在该地区茂密森林中的隐匿物种的信息。由于土地利用变化和狩猎(后者通常被称为“灭绝”),全球的脊椎动物种群正在减少。在热带亚洲,这种情况尤其如此,那里的土地利用变化广泛,人口密度高。强有力的监测需要为科学界和应用界提供大量的脊椎动物种群数据。相机陷阱已成为在自然栖息地中调查脊椎动物的一种有效、非侵入性、广泛且常见的方法。然而,相机获取的数据仍然分散在各种来源中,包括已发表的科学文献、灰色文献和未发表的作品,这使得研究人员难以充分利用相机在生态学、保护和管理方面的潜力。有鉴于此,我们整理并标准化了在热带亚洲进行的 239 项相机陷阱研究的观测结果。共有 371 个不同物种的 278260 个独立记录,其中包括 232 种哺乳动物、132 种鸟类和 7 种爬行动物。本文数据中累积的总诱捕工作量包括 876606 个诱捕夜,分布在印度尼西亚、新加坡、马来西亚、不丹、泰国、缅甸、柬埔寨、老挝、越南、尼泊尔和印度东部偏远地区。该地区相对标准化的部署方法提供了一个一致、可靠且丰富的计数数据集,与其他大规模的仅存在数据集中的相比(例如,全球生物多样性信息设施 (GBIF) 或公民科学存储库(例如,iNaturalist)),与 eBird 最为相似。为了便于使用这些数据,我们还提供了哺乳动物物种特征信息和在相机调查质心周围三个空间尺度(在 10、20 和 30 公里缓冲区)上计算的 13 个环境协变量。我们将更新数据集,以包括更广泛的温带亚洲覆盖范围,并在有新的调查和协变量时添加。该数据集为单种生态或保护研究以及应用生态学、群落生态学和宏观生态学研究提供了巨大的机会。这些数据可供公众使用和研究。在使用这些数据时,请引用本数据论文。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验