Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Quebec, Canada.
Department of Bioengineering, McGill University, Montréal, Quebec, Canada.
Hum Brain Mapp. 2022 Sep;43(13):4045-4073. doi: 10.1002/hbm.25902. Epub 2022 May 14.
The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.
电生理学和 BOLD-fMRI 之间的关系需要进一步阐明。研究这种关系的一种方法是从电生理学中找到可以解释 BOLD 时间序列方差的时频特征。通常需要将这些特征与标准的血流动力学响应函数(HRF)卷积,以模拟神经血管耦合机制,并因此解释电生理和 BOLD-fMRI 数据之间的时间移位。我们提出了一种从电生理学中提取这些时频特征的空间分布的框架,同时还估计了更灵活、特定于区域的 HRF。该方法的核心组件是使用典型多元分解对包含脉冲响应函数的张量进行分解。这种分解的输出提供了对电生理学和 BOLD-fMRI 之间关系的深入了解,并可用于构建 BOLD 时间序列的估计值。我们在模拟数据上展示了该方法的性能,同时还检查了模拟测量噪声和生理混杂的影响。之后,我们在公开的基于任务和静息态 EEG-fMRI 数据上验证了我们的方法。我们调整了我们的方法以适应这些数据集的多主体性质,从而能够研究关于 EEG 到 BOLD 神经血管耦合机制的个体间可变性。因此,我们还展示了用于建模 BOLD 信号的 EEG 特征如何在不同的个体之间存在差异。