Yao Saisai, Zhang Zhiguo, Guo Shu, Yu Zhenjiang, Zhang Xueyan, Zuo Pengjian, Wang Jiajun, Yin Geping, Huo Hua
Key Laboratory of Materials for New Energy Conversion and Storage (Ministry of Industry Technology, Harbin 150001, China.
Key Laboratory of Materials for New Energy Conversion and Storage (Ministry of Industry Technology, Harbin 150001, China; Cell Engineering Department, Beijing Automotive Technology Center, Beijing 101300, China.
J Colloid Interface Sci. 2022 Sep 15;622:1020-1028. doi: 10.1016/j.jcis.2022.04.175. Epub 2022 May 4.
For micron-sized nickel-based hydroxides sheets, the reaction and migration of anions/water molecules in the inner region tends to lag behind those along the edge, which can cause structure mismatch and capacity degradation during cycles. Nanosizing and structure design is a feasible solution to shorten the ion/electron path and improve the reaction homogeneity. Herein, this study reports a novel three-stage strategy (self-assembly of NiMn-LDH/ppy-C - reduction to NiMn/ppy-C - in situ phase transformation into NiMn/NiMn-LDH/ppy-C) to reduce the sheet size of NiMn-LDH to nanometer. Triggered by electrochemical activation, NiMn-LDH nanosheets can hereby easily and orderly grow on the exposed active (111) crystal plane of Ni to establish NiMn-LDH/NiMn heterostructure around ppy-C. Importantly, nanosizing and hierarchical structure play a synergistic role to maintain structural integrity and to promote the electron/mass transfer kinetics. The NiMn/NiMn-LDH/ppy-C composite delivers superior cycling stability with almost no decay of capacity retention after 40,000 cycles at 5 A g. Our hierarchical morphology modulation provides an ingenious, efficient way to boost the performance of Ni-based layered hydroxide materials.
对于微米级的镍基氢氧化物薄片,内部区域中阴离子/水分子的反应和迁移往往落后于边缘区域,这可能导致循环过程中的结构失配和容量衰减。纳米化和结构设计是缩短离子/电子路径并提高反应均匀性的可行解决方案。在此,本研究报告了一种新颖的三阶段策略(NiMn-LDH/ppy-C的自组装 - 还原为NiMn/ppy-C - 原位相转变为NiMn/NiMn-LDH/ppy-C),以将NiMn-LDH的薄片尺寸减小到纳米级。在电化学活化的触发下,NiMn-LDH纳米片能够在此轻松且有序地生长在暴露的Ni活性(111)晶面上,从而在ppy-C周围建立NiMn-LDH/NiMn异质结构。重要的是,纳米尺寸和分级结构起到协同作用,以保持结构完整性并促进电子/质量传递动力学。NiMn/NiMn-LDH/ppy-C复合材料在5 A g的电流密度下循环40000次后,具有出色的循环稳定性,容量保持率几乎没有衰减。我们的分级形态调制提供了一种巧妙、有效的方法来提升镍基层状氢氧化物材料的性能。