Suppr超能文献

DeepAS-用于活性类似物系列扩展的化学语言模型。

DeepAS - Chemical language model for the extension of active analogue series.

机构信息

Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan.

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany.

出版信息

Bioorg Med Chem. 2022 Jul 15;66:116808. doi: 10.1016/j.bmc.2022.116808. Epub 2022 May 8.

Abstract

In medicinal chemistry, hit-to-lead and lead optimization efforts produce analogue series (ASs), the analysis of which is of central relevance for the exploration and exploitation of structure-activity relationships (SARs) and generation of candidate compounds. The key question in any chemical optimization effort is which analogue(s) to generate next, for which computational support is typically provided through QSAR analysis and compound potency predictions. In this study, we introduce a new chemical language model for analogue design via deep learning. For this purpose, ASs comprising active compounds are ordered according to increasing potency and the chemical language model predicts preferred R-groups for new analogues on the basis of ordered R-group sequences. Hence, consistent with the principles of deep models for natural language processing, analogues with new R-groups are predicted based upon conditional probabilities taking preceding groups into account. This implicitly accounts for the potency gradient captured by an AS and detectable SAR trends, providing a new concept for analogue design. Herein, we report the AS-based chemical language model, its initial evaluation, and exemplary applications.

摘要

在药物化学中,从命中到先导化合物优化和先导化合物优化努力产生类似物系列(AS),对其进行分析对于探索和利用构效关系(SAR)以及生成候选化合物至关重要。在任何化学优化工作中,关键问题是接下来要生成哪个类似物,通常通过定量构效关系分析和化合物效力预测为其提供计算支持。在这项研究中,我们通过深度学习为类似物设计引入了一种新的化学语言模型。为此,根据活性化合物的效力对类似物系列进行排序,并根据有序的 R 基团序列预测新类似物的首选 R 基团。因此,与自然语言处理的深度学习模型的原理一致,基于考虑到前面基团的条件概率来预测具有新 R 基团的类似物。这隐含地解释了 AS 所捕获的效力梯度和可检测的 SAR 趋势,为类似物设计提供了一个新概念。在此,我们报告了基于 AS 的化学语言模型、其初步评估和示例应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验