Doustkhah Esmail, Esmat Mohamed, Fukata Naoki, Ide Yusuke, Hanaor Dorian A H, Assadi M Hussein N
Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, 34450, Istanbul, Turkey; International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan.
International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Ibaraki, Japan; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef, 62511, Egypt.
Chemosphere. 2022 Sep;303(Pt 1):134932. doi: 10.1016/j.chemosphere.2022.134932. Epub 2022 May 11.
We show here that MOF-5, a sample Zn-based MOF, can uniquely transform into distinct zinc oxide nanostructures. Inspired by the interconversion synthesis of zeolites, we converted MOF-5 into nanocrystalline ZnO. We found the conversion of MOF-5 into ZnO to be tunable and straightforward simply by controlling the treatment temperature and choosing an appropriate structure-directing agent (SDA). Refined X-ray diffraction (XRD) patterns showed that a synthesis temperature of 180 °C (sample ZnO-180) was optimal for achieving high crystallinity. We examined ZnO-180 with high-resolution transmission electron microscopy (HRTEM), which confirmed that the samples were made of individual crystallites grown along the c-axis, or the (001) direction, thus exposing lower energy surfaces and corroborating the XRD pattern and the molecular dynamics calculations. Further investigations revealed that the obtained ZnO at 180 °C has a superior photocatalytic activity in degrading methylene blue to other ZnO nanostructures obtained at lower temperatures.
我们在此表明,MOF-5(一种典型的锌基金属有机框架材料)能够独特地转化为不同的氧化锌纳米结构。受沸石相互转化合成的启发,我们将MOF-5转化为纳米晶氧化锌。我们发现,只需控制处理温度并选择合适的结构导向剂(SDA),MOF-5向ZnO的转化即可调控且简便易行。精细的X射线衍射(XRD)图谱表明,180°C的合成温度(样品ZnO-180)最有利于实现高结晶度。我们用高分辨率透射电子显微镜(HRTEM)对ZnO-180进行了检测,结果证实样品由沿c轴或(001)方向生长的单个微晶组成,从而暴露出能量较低的表面,这与XRD图谱和分子动力学计算结果相符。进一步研究表明,在180°C下获得的ZnO在降解亚甲基蓝方面比在较低温度下获得的其他ZnO纳米结构具有更高的光催化活性。