Suppr超能文献

基于多统计分析的 2008 年至 2020 年中国长江流域水质时空变化及其驱动因素。

Spatiotemporal variations of water quality and their driving forces in the Yangtze River Basin, China, from 2008 to 2020 based on multi-statistical analyses.

机构信息

University of Science and Technology Beijing, Beijing, 100083, China.

China National Environmental Monitoring Center, Beijing, 100012, China.

出版信息

Environ Sci Pollut Res Int. 2022 Oct;29(46):69388-69401. doi: 10.1007/s11356-022-20667-3. Epub 2022 May 14.

Abstract

Water quality deterioration is a prominent issue threatening water security worldwide. As the largest river in China, the Yangtze River Basin is facing severe water pollution due to intense human activities. Analyzing water quality trends and identifying the corresponding driver factors are important components of sustainable water quality management. Thus, spatiotemporal characteristics of the water quality from 2008 to 2020 were analyzed by using a Mann-Kendall test and rescaled range analysis (R/S). In addition, multi-statistical analyses were used to determine the main driving factors of variation in the permanganate index (COD), ammonia nitrogen (NH-N) concentration, and total phosphorus (TP) concentration. The results showed that the mean concentrations of NH-N and TP decreased from 0.31 to 0.16 mg/L and 0.16 to 0.07 mg/L, respectively, from 2008 to 2020, indicating that the water quality improved during this period. However, the concentration of COD did not reduce remarkably. Based on R/S analysis, the NH-N concentration was predicted to continue to decrease from 2020 to 2033, whereas the COD concentration was forecast to increase, highlighting an issue of great concern. In terms of spatial distribution, water quality in the upstream was better than that of the mid-downstream. Multi-statistical analyses revealed that the temporal variation in water quality was predominantly influenced by tertiary industry (TI), the nitrogen fertilizer application rate (N-FAR), the phosphate fertilizer application rate (P-FAR), and the irrigation area of arable land (IAAL), with contribution rates of 15.92%, 14.65%, 3.46%, and 2.84%, respectively. The spatial distribution of COD was mainly influenced by TI, whereas that of TP was primarily determined by anthropogenic activity factors (e.g., N-FAR, P-FAR). This study provides deep insight into water quality evolution in the Yangtze River Basin that can guide water quality management in this region.

摘要

水质恶化是威胁全球水安全的一个突出问题。作为中国最大的河流,长江流域由于人类活动的强烈影响,面临着严重的水污染。分析水质趋势并识别相应的驱动因素是可持续水质管理的重要组成部分。因此,本研究采用曼肯德尔检验和重标极差分析(R/S)对 2008 年至 2020 年的水质时空特征进行了分析。此外,还采用多元统计分析方法确定高锰酸盐指数(COD)、氨氮(NH-N)浓度和总磷(TP)浓度变化的主要驱动因素。结果表明,从 2008 年到 2020 年,NH-N 和 TP 的平均浓度分别从 0.31 降至 0.16mg/L 和从 0.16 降至 0.07mg/L,表明在此期间水质有所改善。然而,COD 浓度并未显著降低。基于 R/S 分析,NH-N 浓度预计将继续从 2020 年下降至 2033 年,而 COD 浓度预计将增加,这是一个值得关注的问题。就空间分布而言,上游的水质优于中下游。多元统计分析表明,水质的时间变化主要受第三产业(TI)、氮肥施用量(N-FAR)、磷肥施用量(P-FAR)和耕地灌溉面积(IAAL)的影响,贡献率分别为 15.92%、14.65%、3.46%和 2.84%。COD 的空间分布主要受 TI 影响,而 TP 的空间分布主要受人为活动因素(如 N-FAR、P-FAR)影响。本研究深入了解了长江流域水质的演变,可为该地区的水质管理提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验