Suppr超能文献

基于磁共振成像模式的精神分裂症诊断的人工智能技术概述:方法、挑战和未来工作。

An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works.

机构信息

Dept. of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

Comput Biol Med. 2022 Jul;146:105554. doi: 10.1016/j.compbiomed.2022.105554. Epub 2022 May 10.

Abstract

Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed that SZ affects the temporal and anterior lobes of hippocampus regions of the brain. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. Magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder, owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to accurately diagnose SZ. This paper presents a comprehensive overview of studies conducted on the automated diagnosis of SZ using MRI modalities. First, an AI-based computer aided-diagnosis system (CADS) for SZ diagnosis and its relevant sections are presented. Then, this section introduces the most important conventional machine learning (ML) and deep learning (DL) techniques in the diagnosis of diagnosing SZ. A comprehensive comparison is also made between ML and DL studies in the discussion section. In the following, the most important challenges in diagnosing SZ are addressed. Future works in diagnosing SZ using AI techniques and MRI modalities are recommended in another section. Results, conclusion, and research findings are also presented at the end.

摘要

精神分裂症(SZ)是一种精神障碍,通常在青少年晚期或成年早期出现。它使患者的预期寿命缩短了 15 年。其最显著的症状包括异常行为、情感感知、社会关系和现实感知。过去的研究表明,SZ 会影响大脑海马体的颞叶和前叶区域。此外,由于这种疾病,还可以观察到脑脊液(CSF)体积增加和白质和灰质体积减少。磁共振成像(MRI)是一种流行的神经影像学技术,用于探索 SZ 障碍中的结构/功能大脑异常,因为它具有高空间分辨率。各种人工智能(AI)技术已经与先进的图像/信号处理方法一起使用,以准确诊断 SZ。本文全面概述了使用 MRI 模式对 SZ 进行自动诊断的研究。首先,介绍了基于 AI 的 SZ 诊断计算机辅助诊断系统(CADS)及其相关部分。然后,本节介绍了在 SZ 诊断中最常用的传统机器学习(ML)和深度学习(DL)技术。在讨论部分还对 ML 和 DL 研究进行了全面比较。接下来,在诊断 SZ 中遇到的最重大挑战进行了探讨。在另一部分中,推荐了使用 AI 技术和 MRI 模式来诊断 SZ 的未来工作。最后,给出了结果、结论和研究结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验