Saha Arghyasree, Park Seungmin, Geem Zong Woo, Singh Pawan Kumar
Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata-700106, West Bengal, India.
Department of Software, Dongseo University, Busan 47011, Republic of Korea.
Diagnostics (Basel). 2024 Nov 29;14(23):2698. doi: 10.3390/diagnostics14232698.
BACKGROUND/OBJECTIVES: Artificial Intelligence (AI) in healthcare employs advanced algorithms to analyze complex and large-scale datasets, mimicking aspects of human cognition. By automating decision-making processes based on predefined thresholds, AI enhances the accuracy and reliability of healthcare data analysis, reducing the need for human intervention. Schizophrenia (SZ), a chronic mental health disorder affecting millions globally, is characterized by symptoms such as auditory hallucinations, paranoia, and disruptions in thought, behavior, and perception. The SZ symptoms can significantly impair daily functioning, underscoring the need for advanced diagnostic tools.
This systematic review has been conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines and examines peer-reviewed studies from the last decade (2015-2024) on AI applications in SZ detection as well as classification. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) under registration number: CRD42024612364. Research has been sourced from multiple databases and screened using predefined inclusion criteria. The review evaluates the use of both Machine Learning (ML) and Deep Learning (DL) methods across multiple modalities, including Electroencephalography (EEG), Structural Magnetic Resonance Imaging (sMRI), and Functional Magnetic Resonance Imaging (fMRI). The key aspects reviewed include datasets, preprocessing techniques, and AI models.
The review identifies significant advancements in AI methods for SZ diagnosis, particularly in the efficacy of ML and DL models for feature extraction, classification, and multi-modal data integration. It highlights state-of-the-art AI techniques and synthesizes insights into their potential to improve diagnostic outcomes. Additionally, the analysis underscores common challenges, including dataset limitations, variability in preprocessing approaches, and the need for more interpretable models.
This study provides a comprehensive evaluation of AI-based methods in SZ prognosis, emphasizing the strengths and limitations of current approaches. By identifying unresolved gaps, it offers valuable directions for future research in the application of AI for SZ detection and diagnosis.
背景/目的:医疗保健领域的人工智能(AI)运用先进算法来分析复杂的大规模数据集,模拟人类认知的各个方面。通过基于预定义阈值自动执行决策过程,人工智能提高了医疗保健数据分析的准确性和可靠性,减少了对人工干预的需求。精神分裂症(SZ)是一种影响全球数百万人的慢性心理健康障碍,其特征包括幻听、偏执以及思维、行为和感知方面的紊乱。精神分裂症症状会严重损害日常功能,凸显了对先进诊断工具的需求。
本系统评价遵循PRISMA(系统评价和荟萃分析的首选报告项目)2020指南进行,审查了过去十年(2015 - 2024年)关于人工智能在精神分裂症检测和分类中的应用的同行评审研究。该评价方案已在国际前瞻性系统评价注册库(PROSPERO)中注册,注册号为:CRD42024612364。研究来源于多个数据库,并使用预定义的纳入标准进行筛选。该评价评估了机器学习(ML)和深度学习(DL)方法在多种模态中的应用,包括脑电图(EEG)、结构磁共振成像(sMRI)和功能磁共振成像(fMRI)。审查的关键方面包括数据集、预处理技术和人工智能模型。
该评价确定了人工智能方法在精神分裂症诊断方面的重大进展,特别是在机器学习和深度学习模型进行特征提取、分类和多模态数据整合的功效方面。它突出了最先进的人工智能技术,并综合了对其改善诊断结果潜力的见解。此外,分析强调了常见挑战,包括数据集限制、预处理方法的变异性以及对更具可解释性模型的需求。
本研究对基于人工智能的方法在精神分裂症预后中的应用进行了全面评估,强调了当前方法的优势和局限性。通过识别未解决的差距,它为未来人工智能在精神分裂症检测和诊断中的应用研究提供了有价值的方向。