Suppr超能文献

系统协作的基因组数据再分析可提高神经罕见病的诊断产量。

Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases.

机构信息

Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.

出版信息

J Mol Diagn. 2022 May;24(5):529-542. doi: 10.1016/j.jmoldx.2022.02.003.

Abstract

Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).

摘要

许多患有罕见病的患者即使经过基因组测试也未能得到确诊。对现有基因组数据进行重新分析已被证明可以提高诊断率,尽管很少有系统和全面的重新分析工作可以实现协作解释和未来的重新解释。加泰罗尼亚未确诊罕见病项目(URD)整理了 323 个有神经罕见病的家庭(543 个人)之前未得出明确结论的高质量基因组数据(面板、外显子组和基因组)和标准化表型谱。对这些数据进行了系统的重新分析,以确定相关性、纯合子连续、亲缘关系、单核苷酸变异、插入和缺失以及拷贝数变异。通过一个定制的基因组-表型分析平台在联盟内共享和协作解释数据,该平台还可以实现未来的数据重新解释。对现有基因组数据的重新分析为 20.7%的患者提供了诊断,其中 1.8%的患者在生成额外的基因组数据以识别第二个致病性杂合变异后被诊断出来。基于家族的外显子组/基因组重新分析的诊断率明显高于单样本面板。大多数新的诊断归因于最近的基因-疾病关联(50.8%)、额外或改进的生物信息学分析(19.7%)以及加泰罗尼亚未确诊罕见病项目基因组-表型分析平台功能中整合的标准化表型数据(18%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验