Suppr超能文献

通过对基因组-表型数据的计划性重新分析来解决罕见病患者的问题。

Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

机构信息

CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain.

Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.

出版信息

Eur J Hum Genet. 2021 Sep;29(9):1337-1347. doi: 10.1038/s41431-021-00852-7. Epub 2021 Jun 1.

Abstract

Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics.

摘要

重新分析不确定的外显子/基因组测序数据可以提高罕见病患者的诊断率。然而,重新分析所需的成本和精力阻碍了其在研究和临床环境中的常规实施。Solve-RD 项目旨在揭示未确诊的罕见疾病的潜在分子原因。目标之一是实施创新方法来重新分析数千个经过充分研究的未确诊病例的外显子和基因组。原始基因组数据通过 RD-Connect 基因组-表型分析平台 (GPAP) 与标准化的表型和家系数据一起提交给 Solve-RD。我们开发了一个重新分析基因组-表型数据的编程工作流程。它使用 RD-Connect GPAP 的应用程序编程接口 (API),并依赖于构建系统的大数据技术。我们已经应用该工作流程从 4411 个未确诊病例中优先考虑罕见的已知致病性变异。查询平均返回每个病例 1.45 个变异,首先由一组疾病专家进行批量评估,然后由每个病例的提交者进行具体评估。总共已经解决了 120 个索引病例(优先病例的 21.2%,所有外显子/基因组阴性样本的 2.7%),其他病例正在调查中。正如美国医学遗传学学院所建议的那样,实施这种解决方案为临床环境中的定期病例级数据重新评估提供了技术框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d39/8440686/71fd3a28ead9/41431_2021_852_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验