Suppr超能文献

迈向异常脑活动的精确定位:基于单像素功能磁共振成像时间序列的一维卷积神经网络

Toward Precise Localization of Abnormal Brain Activity: 1D CNN on Single Voxel fMRI Time-Series.

作者信息

Wu Yun-Ying, Hu Yun-Song, Wang Jue, Zang Yu-Feng, Zhang Yu

机构信息

Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.

Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.

出版信息

Front Comput Neurosci. 2022 Apr 27;16:822237. doi: 10.3389/fncom.2022.822237. eCollection 2022.

Abstract

Functional magnetic resonance imaging (fMRI) is one of the best techniques for precise localization of abnormal brain activity non-invasively. Machine-learning approaches have been widely used in neuroimaging studies; however, few studies have investigated the single-voxel modeling of fMRI data under cognitive tasks. We proposed a hybrid one-dimensional (1D) convolutional neural network (1D-CNN) based on the temporal dynamics of single-voxel fMRI time-series and successfully differentiated two continuous task states, namely, self-initiated (SI) and visually guided (VG) motor tasks. First, 25 activation peaks were identified from the contrast maps of SI and VG tasks in a blocked design. Then, the fMRI time-series of each peak voxel was transformed into a temporal-frequency domain by using continuous wavelet transform across a broader frequency range (0.003-0.313 Hz, with a step of 0.01 Hz). The transformed time-series was inputted into a 1D-CNN model for the binary classification of SI and VG continuous tasks. Compared with the univariate analysis, e.g., amplitude of low-frequency fluctuation (ALFF) at each frequency band, including, wavelet-ALFF, the 1D-CNN model highly outperformed wavelet-ALFF, with more efficient decoding models [46% of 800 models showing area under the curve (AUC) > 0.61] and higher decoding accuracies (94% of the efficient models), especially on the high-frequency bands (>0.1 Hz). Moreover, our results also demonstrated the advantages of wavelet decompositions over the original fMRI series by showing higher decoding performance on all peak voxels. Overall, this study suggests a great potential of single-voxel analysis using 1D-CNN and wavelet transformation of fMRI series with continuous, naturalistic, steady-state task design or resting-state design. It opens new avenues to precise localization of abnormal brain activity and fMRI-guided precision brain stimulation therapy.

摘要

功能磁共振成像(fMRI)是用于非侵入性精确定位异常脑活动的最佳技术之一。机器学习方法已广泛应用于神经影像学研究;然而,很少有研究在认知任务下对fMRI数据进行单像素建模。我们基于单像素fMRI时间序列的时间动态提出了一种混合一维(1D)卷积神经网络(1D-CNN),并成功区分了两种连续任务状态,即自我启动(SI)和视觉引导(VG)运动任务。首先,在组块设计中从SI和VG任务的对比图中识别出25个激活峰值。然后,通过在更宽的频率范围(0.003-0.313Hz,步长为0.01Hz)使用连续小波变换,将每个峰值体素的fMRI时间序列转换到时间-频率域。将转换后的时间序列输入到1D-CNN模型中,用于对SI和VG连续任务进行二分类。与单变量分析相比,例如每个频段的低频波动幅度(ALFF),包括小波-ALFF,1D-CNN模型的表现远远优于小波-ALFF,具有更高效的解码模型[800个模型中有46%的曲线下面积(AUC)>0.61]和更高的解码准确率(高效模型的94%),特别是在高频段(>0.1Hz)。此外,我们的结果还通过在所有峰值体素上显示出更高的解码性能,证明了小波分解相对于原始fMRI序列的优势。总体而言,本研究表明使用1D-CNN和具有连续、自然、稳态任务设计或静息态设计的fMRI序列进行小波变换的单像素分析具有巨大潜力。它为异常脑活动的精确定位和fMRI引导的精准脑刺激治疗开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b9/9094401/2be3f75f3747/fncom-16-822237-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验