Department of Computer Engineering, Middle East Technical University, Ankara, Turkey.
Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
Brain Imaging Behav. 2018 Aug;12(4):1067-1083. doi: 10.1007/s11682-017-9774-z.
Human brain is supposed to process information in multiple frequency bands. Therefore, we can extract diverse information from functional Magnetic Resonance Imaging (fMRI) data by processing it at multiple resolutions. We propose a framework, called Hierarchical Multi-resolution Mesh Networks (HMMNs), which establishes a set of brain networks at multiple resolutions of fMRI signal to represent the underlying cognitive process. Our framework, first, decomposes the fMRI signal into various frequency subbands using wavelet transform. Then, a brain network is formed at each subband by ensembling a set of local meshes. Arc weights of each local mesh are estimated by ridge regression. Finally, adjacency matrices of mesh networks obtained at different subbands are used to train classifiers in an ensemble learning architecture, called fuzzy stacked generalization (FSG). Our decoding performances on Human Connectome Project task-fMRI dataset reflect that HMMNs can successfully discriminate tasks with 99% accuracy, across 808 subjects. Diversity of information embedded in mesh networks of multiple subbands enables the ensemble of classifiers to collaborate with each other for brain decoding. The suggested HMMNs decode the cognitive tasks better than a single classifier applied to any subband. Also mesh networks have a better representation power compared to pairwise correlations or average voxel time series. Moreover, fusion of diverse information using FSG outperforms fusion with majority voting. We conclude that, fMRI data, recorded during a cognitive task, provide diverse information in multi-resolution mesh networks. Our framework fuses this complementary information and boosts the brain decoding performances obtained at individual subbands.
人类大脑应该在多个频带中处理信息。因此,我们可以通过在多个分辨率下处理功能磁共振成像 (fMRI) 数据来提取不同的信息。我们提出了一种称为层次多分辨率网格网络 (HMMN) 的框架,该框架在多个 fMRI 信号分辨率下建立了一组大脑网络,以表示潜在的认知过程。我们的框架首先使用小波变换将 fMRI 信号分解为多个频率子带。然后,通过组合一组局部网格在每个子带中形成一个脑网络。每个局部网格的弧权重由岭回归估计。最后,使用在不同子带中获得的网格网络的邻接矩阵,在称为模糊堆叠泛化 (FSG) 的集成学习架构中训练分类器。我们在人类连接组计划任务 fMRI 数据集上的解码性能反映了 HMMN 可以成功地以 99%的准确率区分任务,涉及 808 个受试者。多个子带中网格网络嵌入的信息多样性使分类器的集合能够相互协作进行大脑解码。与应用于任何子带的单个分类器相比,建议的 HMMN 可以更好地解码认知任务。此外,与成对相关或平均体素时间序列相比,网格网络具有更好的表示能力。此外,使用 FSG 融合多种信息优于使用多数投票融合。我们得出结论,在认知任务期间记录的 fMRI 数据在多分辨率网格网络中提供了多种信息。我们的框架融合了这种互补信息,并提高了在单个子带中获得的大脑解码性能。