Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy.
ACS Macro Lett. 2022 Apr 19;11(4):415-421. doi: 10.1021/acsmacrolett.2c00114. Epub 2022 Mar 10.
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
在过去的三十年中,可逆失活自由基聚合(RDRP)的发展以及朝着更易用和更易获得的实验设置的进展,为非专业人员设计具有明确定义性质的复杂大分子打开了大门。外部调节、对氧气的更高耐受性以及更高合成产量的反应体积增加是许多值得注意的技术改进之一。RDRP 在溶液中的发展与它们在固体基质上的应用相平行,通过表面引发 RDRP(SI-RDRP)合成表面接枝的“聚合物刷”。本观点文章提供了对氧容忍的 SI-RDRP 方法的最新发展的当前观点,特别是强调了那些有可能为技术相关材料的功能化而扩大刷的合成的方法。