Kapil Kriti, Jazani Arman Moini, Szczepaniak Grzegorz, Murata Hironobu, Olszewski Mateusz, Matyjaszewski Krzysztof
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
Macromolecules. 2023 Feb 20;56(5):2017-2026. doi: 10.1021/acs.macromol.2c02537. eCollection 2023 Mar 14.
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using Cu/MeTREN (MeTREN = tris[2-(dimethylamino)ethyl]amine) and EYH at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average = 480, OEOA) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
在过去十年中,已开发出光诱导原子转移自由基聚合(ATRP)技术来利用光能产生自由基。这些方法大多需要使用紫外光引发聚合反应。然而,紫外光有几个缺点:它会使蛋白质降解、损害DNA、引发不良副反应,并且在反应介质中的穿透深度较低。最近,我们展示了双催化的绿光诱导ATRP,其中曙红Y(EYH)作为有机光氧化还原催化剂与铜配合物联合使用。这种双催化被证明是高效的,无需脱氧就能实现聚(环氧乙烷)甲基醚甲基丙烯酸酯的快速且可控的水相聚合。在此,我们将该体系扩展到在生物相关条件下使用ppm级别的Cu/MeTREN(MeTREN = 三[2-(二甲基氨基)乙基]胺)和EYH合成聚丙烯酸酯。水溶性聚(环氧乙烷)甲基醚丙烯酸酯(平均 = 480,OEOA)在绿光照射(520 nm)下于开放反应容器中聚合。尽管氧气持续扩散,但在40分钟内仍实现了高单体转化率,对于广泛的目标聚合度范围(50 - 800)得到了分子量分布窄(1.17 ≤ ≤ 1.23)的聚合物。原位链延伸和嵌段共聚证实了链端官能团得以保留。此外,通过打开/关闭绿光可引发/停止聚合反应,显示出时间控制。优化后的条件还能实现各种亲水性丙烯酸酯单体的可控聚合,如丙烯酸2 - 羟乙酯、丙烯酸2 - (甲基亚磺酰基)乙酯和两性离子羧基甜菜碱丙烯酸酯。值得注意的是,该方法使用简单的反应装置无需严格脱氧就能合成结构明确的基于丙烯酸酯的蛋白质 - 聚合物杂化物。