Suppr超能文献

利用遗传算法结合人工神经网络对固定化脲酶的磁铁矿纳米粒子的尿素水解动力学进行建模。

Modelling of urea hydrolysis kinetics using genetic algorithm coupled artificial neural networks in urease immobilized magnetite nanoparticles.

机构信息

Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Tamilnadu, 602105, India.

Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India.

出版信息

Chemosphere. 2022 Sep;303(Pt 1):134929. doi: 10.1016/j.chemosphere.2022.134929. Epub 2022 May 13.

Abstract

The presence of urea in runoff from fertilized soil could be contributing to the growth of dangerous blooms. Enzymatic urea hydrolysis is a well-known outstanding process that, when integrated with nanotechnology, would be much more efficient. This research provides a novel perspective on magnetic nanobiocatalysts that reduce diffusion barriers in effective urea hydrolysis. Surprisingly, the model developed with the use of a Genetic Algorithm (GA) and an Artificial Neural Network (ANN) demonstrated that the system's diffusion restrictions were reduced. In order to forecast accurate outputs using artificial intelligence (AI), a neural network with one hidden layer and 20 neurons was built utilizing multilayer feed-forward network and showed highest output (diffusion co-efficient) with least mean square error (MSE). The diffusion coefficients of free urease, urease immobilized onto porous MNs (U-aMNs), and nanobiocatalyst, i.e. urease immobilized onto surface modified MNs (U-MN), were 1.9 × 10, 12.62 × 10, and 15.48 × 10 cm/min, respectively. These results revealed that the addition of Chitosan to the surface of MNs had a considerable impact on enzyme dispersion. The decrease in Damkohler number (Da) from 2.37 ± 0.26 for U-aMNs to 2.19 ± 0.11 for U-MN suggested a beneficial effect in overcoming diffusion constraints. Pseudo-first order and pseudo-second order models were used to analyze urea uptake kinetics, with the former model offering the best fit to the system, with R values that were much closer to unity.

摘要

施肥土壤径流中尿素的存在可能导致危险藻类大量繁殖。酶促尿素水解是一种众所周知的出色过程,如果与纳米技术结合,其效率将更高。本研究为磁纳米生物催化剂提供了新的视角,可降低有效尿素水解中的扩散障碍。令人惊讶的是,使用遗传算法 (GA) 和人工神经网络 (ANN) 开发的模型表明,系统的扩散限制得到了降低。为了使用人工智能 (AI) 进行准确的预测,使用多层前馈网络构建了一个具有一个隐藏层和 20 个神经元的神经网络,并显示出最高的输出(扩散系数)和最小均方误差 (MSE)。游离脲酶、多孔 MNs 上固定脲酶 (U-aMNs) 和纳米生物催化剂(即表面修饰 MNs 上固定脲酶 (U-MN) 的扩散系数分别为 1.9×10、12.62×10 和 15.48×10 cm/min。这些结果表明,壳聚糖添加到 MNs 表面对酶的分散有很大影响。从 U-aMNs 的 Da 值 2.37±0.26 降低到 U-MN 的 2.19±0.11,表明克服扩散限制具有有益效果。使用伪一级和伪二级模型分析了尿素吸收动力学,前者模型更适合该系统,其 R 值更接近 1。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验