文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多功能金属有机骨架的纳米反应器用于饥饿/氧化增强吲哚胺 2,3-双加氧酶阻断肿瘤免疫治疗。

Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy.

机构信息

Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, PR China.

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

出版信息

Nat Commun. 2022 May 16;13(1):2688. doi: 10.1038/s41467-022-30436-y.


DOI:10.1038/s41467-022-30436-y
PMID:35577812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9110376/
Abstract

Inhibited immune response and low levels of delivery restrict starvation cancer therapy efficacy. Here, we report on the co-delivery of glucose oxidase (GOx) and indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan using a metal-organic framework (MOF)-based nanoreactor, showing an amplified release for tumor starvation/oxidation immunotherapy. The nanosystem significantly overcomes the biobarriers associated with tumor penetration and improves the cargo bioavailability owing to the weakly acidic tumor microenvironment-activated charge reversal and size reduction strategy. The nanosystem rapidly disassembles and releases cargoes in response to the intracellular reactive oxygen species (ROS). GOx competitively consumes glucose and generates ROS, further inducing the self-amplifiable MOF disassembly and drug release. The starvation/oxidation combined IDO-blockade immunotherapy not only strengthens the immune response and stimulates the immune memory through the GOx-activated tumor starvation and recruitment of effector T cells, but also effectively relieves the immune tolerance by IDO blocking, remarkably inhibiting the tumor growth and metastasis in vivo.

摘要

抑制的免疫反应和低水平的传递限制了饥饿癌症疗法的疗效。在这里,我们报告了使用金属-有机骨架(MOF)-基于纳米反应器共递送葡萄糖氧化酶(GOx)和吲哚胺 2,3-双加氧酶(IDO)抑制剂 1-甲基色氨酸,显示出增强的肿瘤饥饿/氧化免疫治疗释放。由于弱酸性肿瘤微环境激活的电荷反转和尺寸减小策略,该纳米系统显著克服了与肿瘤穿透相关的生物障碍,并提高了货物的生物利用度。纳米系统可快速响应细胞内活性氧(ROS)而解体并释放货物。GOx 竞争性地消耗葡萄糖并产生 ROS,进一步诱导自扩增 MOF 解体和药物释放。饥饿/氧化联合 IDO 阻断免疫疗法不仅通过 GOx 激活的肿瘤饥饿和效应 T 细胞的募集来增强免疫反应和刺激免疫记忆,而且还通过 IDO 阻断有效地缓解免疫耐受,显著抑制体内肿瘤生长和转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/c1d21749e5f9/41467_2022_30436_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/778989073879/41467_2022_30436_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/bb0ede161cca/41467_2022_30436_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/b7196c0272a4/41467_2022_30436_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/2bcb7b090eae/41467_2022_30436_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/597b2ce06b17/41467_2022_30436_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/f9157c3b0057/41467_2022_30436_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/a983fefa6d07/41467_2022_30436_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/8c9ee0923f62/41467_2022_30436_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/09b3e2ea234e/41467_2022_30436_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/c1d21749e5f9/41467_2022_30436_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/778989073879/41467_2022_30436_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/bb0ede161cca/41467_2022_30436_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/b7196c0272a4/41467_2022_30436_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/2bcb7b090eae/41467_2022_30436_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/597b2ce06b17/41467_2022_30436_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/f9157c3b0057/41467_2022_30436_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/a983fefa6d07/41467_2022_30436_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/8c9ee0923f62/41467_2022_30436_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/09b3e2ea234e/41467_2022_30436_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5967/9110376/c1d21749e5f9/41467_2022_30436_Fig10_HTML.jpg

相似文献

[1]
Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy.

Nat Commun. 2022-5-16

[2]
Detachable MOF-Based Core/Shell Nanoreactor for Cancer Dual-Starvation Therapy With Reversing Glucose and Glutamine Metabolisms.

Small. 2023-10

[3]
Tumor Microenvironment-Activated Nanocomposite for Self-Amplifying Chemodynamic/Starvation Therapy Enhanced IDO-Blockade Tumor Immunotherapy.

Adv Sci (Weinh). 2023-12

[4]
Rational design of non-toxic GOx-based biocatalytic nanoreactor for multimodal synergistic therapy and tumor metastasis suppression.

Theranostics. 2021

[5]
Tumor-Targeted Cascade Nanoreactor Based on Metal-Organic Frameworks for Synergistic Ferroptosis-Starvation Anticancer Therapy.

ACS Nano. 2020-9-22

[6]
GSH-Responsive Metal-Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy.

Small. 2022-4

[7]
Erythrocyte Membrane Cloaked Metal-Organic Framework Nanoparticle as Biomimetic Nanoreactor for Starvation-Activated Colon Cancer Therapy.

ACS Nano. 2018-10-3

[8]
TGF-β blockade-improved chemo-immunotherapy with pH/ROS cascade-responsive micelle via tumor microenvironment remodeling.

Biomaterials. 2021-9

[9]
Cascade amplification of tumor chemodynamic therapy and starvation with re-educated TAMs via Fe-MOF based functional nanosystem.

J Nanobiotechnology. 2023-4-11

[10]
A Three-in-one ZIFs-Derived CuCo(O)/GOx@PCNs Hybrid Cascade Nanozyme for Immunotherapy/Enhanced Starvation/Photothermal Therapy.

ACS Appl Mater Interfaces. 2021-3-17

引用本文的文献

[1]
Antibody-functionalized iron-based nanoplatform for ferroptosis-augmented targeted therapy of HER2-positive breast cancer.

Bioact Mater. 2025-6-22

[2]
Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges.

Cancer Metastasis Rev. 2025-5-10

[3]
Reprogramming of Glucose Metabolism by Nanocarriers to Improve Cancer Immunotherapy: Recent Advances and Applications.

Int J Nanomedicine. 2025-4-5

[4]
Evolution of nMOFs in photodynamic therapy: from porphyrins to chlorins and bacteriochlorins for better efficacy.

Front Pharmacol. 2025-3-18

[5]
Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives.

J Nanobiotechnology. 2025-2-28

[6]
Intranasal delivery of metformin using metal-organic framework (MOF)-74-Mg nanocarriers.

Adv Compos Hybrid Mater. 2025

[7]
Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications.

Sci Adv. 2025-1-10

[8]
Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy.

Nat Commun. 2025-1-2

[9]
Harnessing glucose metabolism with nanomedicine for cancer treatment.

Theranostics. 2024

[10]
Tailored polysaccharide entrapping metal-organic framework for RNAi therapeutics and diagnostics in atherosclerosis.

Bioact Mater. 2024-9-28

本文引用的文献

[1]
Tumor-Activated Size-Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Anti-Tumor Immune Responses.

Adv Mater. 2020-9

[2]
Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy.

Biomaterials. 2020-9

[3]
Cold to Hot: Binary Cooperative Microneedle Array-Amplified Photoimmunotherapy for Eliciting Antitumor Immunity and the Abscopal Effect.

ACS Appl Mater Interfaces. 2020-7-22

[4]
Enhanced penetration of pro-apoptotic and anti-angiogenic micellar nanoprobe in 3D multicellular spheroids for chemophototherapy.

J Control Release. 2020-7-10

[5]
Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells.

Proc Natl Acad Sci U S A. 2020-4-20

[6]
Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy.

Biomaterials. 2020-5

[7]
Homotypic targeting upconversion nano-reactor for cascade cancer starvation and deep-tissue phototherapy.

Biomaterials. 2020-3

[8]
Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy.

Nanoscale. 2020-1-24

[9]
Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase.

Eur J Med Chem. 2020-1-9

[10]
Oncolytic Nanoreactors Producing Hydrogen Peroxide for Oxidative Cancer Therapy.

Nano Lett. 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索