文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金属有机框架作为用于过氧化氢生成和环境抗菌应用的热催化剂。

Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications.

作者信息

Pal Arnab, Suresh Sreerag, Khan Arshad, Kuo Li Huai, Chi Li Tang, Ganguly Anindita, Kao Chih-Yao, Sharma Manish Kumar, Wang Tsung-Shing Andrew, Kang Dun-Yen, Lin Zong-Hong

机构信息

Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan.

Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Sci Adv. 2025 Jan 10;11(2):eads4711. doi: 10.1126/sciadv.ads4711. Epub 2025 Jan 8.


DOI:10.1126/sciadv.ads4711
PMID:39772687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11708883/
Abstract

Reactive oxygen species (ROS) are highly reactive, making them useful for environmental and health applications. Traditionally, photocatalysts and piezocatalysts have been used to generate ROS, but their utilization is limited by various environmental and physical constraints. This study introduces metal-organic frameworks (MOFs) as modern thermocatalysts efficiently producing hydrogen peroxide (HO) from small temperature differences. Temperature fluctuations, abundant in daily life, offer tremendous potential for practical thermocatalytic applications. As proof of concept, MOF materials coated onto carbon fiber fabric (MOF@CFF) created a thermocatalytic antibacterial filter. The study compared three different MOFs (CuBDC, MOF-303, and ZIF-8) with bismuth telluride (BiTe), a known thermocatalytic material. ZIF-8 demonstrated superior HO generation under low-temperature differences, achieving 96% antibacterial activity through temperature variation cycles. This work advances potential in thermoelectric applications of MOFs, enabling real-time purification and disinfection through HO generation. The findings open interdisciplinary avenues for leveraging thermoelectric effects in catalysis and various technologies.

摘要

活性氧(ROS)具有高反应活性,这使其在环境和健康应用中很有用处。传统上,光催化剂和压电催化剂已被用于产生活性氧,但它们的应用受到各种环境和物理限制。本研究引入金属有机框架(MOF)作为现代热催化剂,可从小温差中高效产生过氧化氢(HO)。日常生活中存在的温度波动为实际热催化应用提供了巨大潜力。作为概念验证,涂覆在碳纤维织物上的MOF材料(MOF@CFF)制成了一种热催化抗菌过滤器。该研究将三种不同的MOF(CuBDC、MOF-303和ZIF-8)与已知的热催化材料碲化铋(BiTe)进行了比较。ZIF-8在低温差下表现出优异的HO生成能力,通过温度变化循环实现了96%的抗菌活性。这项工作推动了MOF在热电应用方面的潜力,能够通过生成HO实现实时净化和消毒。这些发现为在催化和各种技术中利用热电效应开辟了跨学科途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/9ed880661d55/sciadv.ads4711-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/769cb08514ae/sciadv.ads4711-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/1bdd0ee18ba1/sciadv.ads4711-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/f359b5c93700/sciadv.ads4711-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/5b29d9ad65da/sciadv.ads4711-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/3da412d5f90b/sciadv.ads4711-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/06e57842e998/sciadv.ads4711-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/9ed880661d55/sciadv.ads4711-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/769cb08514ae/sciadv.ads4711-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/1bdd0ee18ba1/sciadv.ads4711-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/f359b5c93700/sciadv.ads4711-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/5b29d9ad65da/sciadv.ads4711-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/3da412d5f90b/sciadv.ads4711-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/06e57842e998/sciadv.ads4711-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f485/11708883/9ed880661d55/sciadv.ads4711-f7.jpg

相似文献

[1]
Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications.

Sci Adv. 2025-1-10

[2]
Thermocatalytic hydrogen peroxide generation and environmental disinfection by BiTe nanoplates.

Nat Commun. 2021-1-8

[3]
Biomimetic Metal-Organic Framework Composite-Mediated Cascade Catalysis for Synergistic Bacteria Killing.

ACS Appl Mater Interfaces. 2020-8-19

[4]
Layered dual-metal nodes metal organic frameworks artificial nanozymes boost the production of reactive oxygen species for antibacterial of drug-resistant bacteria.

J Colloid Interface Sci. 2025-9

[5]
Multifunctional EGCG@ZIF-8 Nanoplatform with Photodynamic Therapy/Chemodynamic Therapy Antibacterial Properties Promotes Infected Wound Healing.

ACS Appl Mater Interfaces. 2024-9-25

[6]
A Hierarchical Metal-Organic Framework Intensifying ROS Catalytic Activity and Bacterial Entrapment for Engineering Self-Antimicrobial Mask.

Adv Sci (Weinh). 2025-2

[7]
Doughnut-shaped bimetallic Cu-Zn-MOF with peroxidase-like activity for colorimetric detection of glucose and antibacterial applications.

Talanta. 2024-11-1

[8]
Ultrasmall iridium-encapsulated porphyrin metal-organic frameworks for enhanced photodynamic/catalytic therapy by producing reactive oxygen species storm.

J Colloid Interface Sci. 2025-1

[9]
MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum.

ACS Appl Mater Interfaces. 2020-8-5

[10]
Porous reticular Co@Fe metal-organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications.

J Mater Chem B. 2024-6-5

引用本文的文献

[1]
Recent advances in metal-organic frameworks for antibacterial applications: mechanisms and emerging strategies.

RSC Adv. 2025-7-28

本文引用的文献

[1]
Oriented 1D Metal-Organic Frameworks for Selective Chemisorption by a Substitution-Insertion Mechanism.

Nano Lett. 2024-10-2

[2]
Superoxide radicals mediated by high-spin Fe catalysis for organic wastewater treatment.

Proc Natl Acad Sci U S A. 2024-8-13

[3]
Scalable multifunctional MOFs-textiles via diazonium chemistry.

Nat Commun. 2024-6-21

[4]
Critical learning from industrial catalysis for nanocatalytic medicine.

Nat Commun. 2024-5-8

[5]
Enhancing photocatalytic HO production with Au co-catalysts through electronic structure modification.

Nat Commun. 2024-4-13

[6]
Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species.

Angew Chem Int Ed Engl. 2024-5-13

[7]
Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO hydrogenation catalyst.

Nat Commun. 2024-3-6

[8]
Dual-site segmentally synergistic catalysis mechanism: boosting CoFeS nanocluster for sustainable water oxidation.

Nat Commun. 2024-2-26

[9]
Exfoliation of Metal-Organic Frameworks to Give 2D MOF Nanosheets for the Electrocatalytic Oxygen Evolution Reaction.

Angew Chem Int Ed Engl. 2024-4-22

[10]
Reduction of Superoxide Radical Intermediate by Polydopamine for Efficient Hydrogen Peroxide Photosynthesis.

Angew Chem Int Ed Engl. 2024-4-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索