Suppr超能文献

海洋酸化对冷水珊瑚的多尺度力学影响。

Multiscale mechanical consequences of ocean acidification for cold-water corals.

机构信息

School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.

Biological Oceanography Research Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.

出版信息

Sci Rep. 2022 May 16;12(1):8052. doi: 10.1038/s41598-022-11266-w.

Abstract

Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.

摘要

海洋酸化对深海珊瑚构成威胁,并可能导致它们所构建的珊瑚礁框架栖息地迅速大量丧失。珊瑚礁框架结构关键部位的弱化会导致生态系统范围内的物理生境崩溃,减少生物多样性支持的潜力。珊瑚崩解和崩溃的机制可以通过实验室规模的实验以及数学和计算模型的组合来描述。我们综合了电子背散射衍射、微计算机断层扫描和微机械实验的数据,并补充了分子动力学和连续体细观力学模拟,以预测在孔隙率增加和溶解的情况下珊瑚结构的失效。结果揭示了冷水珊瑚骨骼建筑材料的显著机械性能,抗压强度为 462MPa,弹性模量为 45-67GPa。这比混凝土强 10 倍,比超高性能纤维增强混凝土或珍珠层强两倍。与预期相反,即使在未来的海洋条件下合成,CWCs 仍能保持其骨骼建筑材料的强度,尽管其刚度会丧失。由于这是在材料长度尺度上,因此不受暴露于腐蚀性水或生物侵蚀导致的孔隙率增加的影响。然后,我们的模型说明了孔隙率的微小增加如何导致珊瑚礁栖息地崩解风险显著增加。这种新的认识,结合未来几十年海水化学将如何变化的预测,将有助于通过确定哪些生态系统处于风险之中以及何时处于风险之中,来支持这些脆弱海洋生态系统的未来保护和管理工作,从而评估对相关生物多样性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d64/9110400/88b7c5b23ef2/41598_2022_11266_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验