Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
Department for Trauma Surgery, Innsbruck University Hospital, Innsbruck, Austria.
Bone. 2021 Jun;147:115930. doi: 10.1016/j.bone.2021.115930. Epub 2021 Mar 19.
Radius fractures are among the most common fracture types; however, there is limited consensus on the standard of care. A better understanding of the fracture healing process could help to shape future treatment protocols and thus improve functional outcomes of patients. High-resolution peripheral quantitative computed tomography (HR-pQCT) allows monitoring and evaluation of the radius on the micro-structural level, which is crucial to our understanding of fracture healing. However, current radius fracture studies using HR-pQCT are limited by the lack of automated contouring routines, hence only including small number of patients due to the prohibitively time-consuming task of manually contouring HR-pQCT images. In the present study, a new method to automatically contour images of distal radius fractures based on 3D morphological geodesic active contours (3D-GAC) is presented. Contours of 60 HR-pQCT images of fractured and conservatively treated radii spanning the healing process up to one year post-fracture are compared to the current gold standard, hand-drawn 2D contours, to assess the accuracy of the algorithm. Furthermore, robustness was established by applying the algorithm to HR-pQCT images of intact radii of 73 patients and comparing the resulting morphometric indices to the gold standard patient evaluation including a threshold- and dilation-based contouring approach. Reproducibility was evaluated using repeat scans of intact radii of 19 patients. The new 3D-GAC approach offers contours within inter-operator variability for images of fractured distal radii (mean Dice score of 0.992 ± 0.005 versus median operator Dice score of 0.992 ± 0.006). The generated contours for images of intact radii yielded morphometric indices within the in vivo reproducibility limits compared to the current gold standard. Additionally, the 3D-GAC approach shows an improved robustness against failure (n = 5) when dealing with cortical interruptions, fracture fragments, etc. compared with the automatic, default manufacturer pipeline (n = 40). Using the 3D-GAC approach assures consistent results, while reducing the need for time-consuming hand-contouring.
桡骨骨折是最常见的骨折类型之一;然而,对于标准治疗方法仍存在争议。更好地了解骨折愈合过程有助于制定未来的治疗方案,从而改善患者的功能预后。高分辨率外周定量计算机断层扫描(HR-pQCT)允许在微观结构水平上监测和评估桡骨,这对于我们了解骨折愈合至关重要。然而,目前使用 HR-pQCT 的桡骨骨折研究受到缺乏自动轮廓绘制程序的限制,因此由于手动绘制 HR-pQCT 图像的任务非常耗时,只能纳入少数患者。在本研究中,提出了一种新的基于三维形态测地线主动轮廓(3D-GAC)的自动勾画桡骨远端骨折图像的方法。将 60 例 HR-pQCT 图像的轮廓与当前的金标准——手工绘制的二维轮廓进行比较,以评估算法的准确性。此外,通过将算法应用于 73 例完整桡骨的 HR-pQCT 图像,并将得到的形态计量学指标与包括基于阈值和膨胀的轮廓方法的金标准患者评估进行比较,来建立算法的稳健性。通过对 19 例完整桡骨的重复扫描来评估可重复性。新的 3D-GAC 方法为桡骨远端骨折的图像提供了在操作者间变异性范围内的轮廓(骨折图像的平均 Dice 评分 0.992±0.005,中位数操作者 Dice 评分 0.992±0.006)。与当前的金标准相比,用于完整桡骨图像的生成轮廓产生的形态计量学指标在体内可重复性的限制范围内。此外,与自动默认制造商管道(n=40)相比,3D-GAC 方法在处理皮质中断、骨折碎片等方面显示出更高的稳健性(n=5)。使用 3D-GAC 方法可以确保结果一致,同时减少对手动轮廓绘制的需求。