MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
Commun Biol. 2022 May 16;5(1):468. doi: 10.1038/s42003-022-03328-6.
The architecture of honey bee combs embodies a range of expressions associated with swarm intelligence, emergent behaviors, and social organization, which has drawn scientists to study them as a model of collective construction processes. Until recently, however, the development of models to characterize comb-building behavior has relied heavily on laborious manual observations and measurements. The use of high-throughput multi-scale analyses to investigate the geometric features of Apis mellifera comb therefore has the potential to vastly expand our understanding of comb-building processes. Inspired by this potential, here we explore connections between geometry and behavior by utilizing computational methods for the detailed examination of hives constructed within environments designed to observe how natural building rule sets respond to environmental perturbations. Using combs reconstructed from X-ray micro-computed tomography source data, we introduce a set of tools to analyze geometry and material distributions from these scans, spanning from individual cells to whole-hive-level length scales. Our results reveal relationships between cell geometry and comb morphology, enable the generalization of prior research on build direction, demonstrate the viability of our methods for isolating specific features of comb architecture, and illustrate how these results may be employed to investigate hive-level behaviors related to build-order and material distributions.
蜜蜂蜂巢的结构体现了一系列与群体智能、涌现行为和社会组织相关的特征,这使得科学家们将其作为集体构建过程的模型进行研究。然而,直到最近,用于描述筑巢行为的模型的发展仍然严重依赖于繁琐的人工观察和测量。因此,使用高通量多尺度分析来研究蜜蜂的蜂巢的几何特征有可能极大地扩展我们对筑巢过程的理解。受这种潜力的启发,我们在这里通过利用计算方法来探索几何形状和行为之间的联系,对在设计用于观察自然筑巢规则如何响应环境干扰的环境中构建的蜂巢进行详细检查。我们使用源自 X 射线微计算机断层扫描源数据的重建蜂巢,引入了一组工具来分析这些扫描中的几何形状和材料分布,范围从单个蜂巢到整个蜂巢的长度尺度。我们的结果揭示了细胞几何形状和蜂巢形态之间的关系,使我们能够推广关于构建方向的先前研究,证明了我们的方法用于分离蜂巢结构特定特征的可行性,并说明了如何利用这些结果来研究与构建顺序和材料分布相关的蜂巢级行为。