Suppr超能文献

TP53、CDKN2A/P16 和 NFE2L2/NRF2 调节小鼠纯小细胞肺癌和合并小细胞肺癌的发生率。

TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice.

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.

Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.

出版信息

Oncogene. 2022 Jun;41(25):3423-3432. doi: 10.1038/s41388-022-02348-0. Epub 2022 May 16.

Abstract

Studies have shown that Nrf2 is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2 mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2 mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2 allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2 mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.

摘要

研究表明,Nrf2 是人类肿瘤中最常见的突变之一。为了阐明这种遗传变化如何导致肺癌,我们比较了具有双重 Trp53/p16 缺失(人类肺癌中最常见的突变)的基因工程小鼠模型(GEMM)与 Nrf2 存在或不存在时的肺癌发展情况。Trp53/p16 缺陷型小鼠发展为小细胞肺癌(SCLC),是纯 SCLC(P-SCLC)和大细胞神经内分泌癌的混合物。具有 LSL-Nrf2 突变的小鼠与 Nrf2 小鼠相比,在 C-SCLC 的发生率或潜伏期方面没有差异。然而,尽管 Cre 诱导 LSL-Nrf2 等位基因重组,但这些肿瘤并未表达 NRF2。Trp53/p16 缺陷型小鼠还发展为 P-SCLC,其中 NRF2 突变的激活与这种肿瘤类型的更高发生率相关。所有 C-SCLCs 和 P-SCLCs 均为 NE 标志物(NKX1-2)阳性和 P63(鳞状细胞标志物)阴性,而仅 P-SCLC 通过免疫组化表达 NRF2。对人类 NE-肺癌肿瘤的共识 NRF2 通路特征分析显示 NRF2 信号的激活存在差异。我们的研究描述了第一个发展为 C-SCLC 的 GEMM,这是一种研究较少的人类癌症,并表明 NRF2 激活在 SCLC 发展中起作用。

相似文献

1
TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice.
Oncogene. 2022 Jun;41(25):3423-3432. doi: 10.1038/s41388-022-02348-0. Epub 2022 May 16.
4
NRF2 Activation in Trp53;p16-deficient Mice Drives Oral Squamous Cell Carcinoma.
Cancer Res Commun. 2024 Feb 21;4(2):487-495. doi: 10.1158/2767-9764.CRC-23-0386.
6
NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas.
Int J Cancer. 2016 Feb 15;138(4):927-38. doi: 10.1002/ijc.29835. Epub 2015 Sep 25.
10
The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung.
J Thorac Oncol. 2015 Apr;10(4):553-64. doi: 10.1097/JTO.0000000000000459.

引用本文的文献

1
Activating NRF2E79Q mutation alters the differentiation of human non-small cell lung cancer.
Res Sq. 2025 May 15:rs.3.rs-6606334. doi: 10.21203/rs.3.rs-6606334/v1.
2
Pyrimethamine and a potent analogue WCDD115 inhibit NRF2 by suppressing DHFR and one-carbon metabolism.
bioRxiv. 2025 Feb 17:2025.02.13.637433. doi: 10.1101/2025.02.13.637433.
3
Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis.
MedComm (2020). 2025 Feb 21;6(3):e70080. doi: 10.1002/mco2.70080. eCollection 2025 Mar.
4
The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: from Biology to Clinical Applications.
Int J Biol Sci. 2024 Nov 11;20(15):6181-6206. doi: 10.7150/ijbs.103187. eCollection 2024.
5
The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer.
Int J Mol Sci. 2024 Nov 7;25(22):11954. doi: 10.3390/ijms252211954.
6
YAP1 Status Defines Two Intrinsic Subtypes of LCNEC with Distinct Molecular Features and Therapeutic Vulnerabilities.
Clin Cancer Res. 2024 Oct 15;30(20):4743-4754. doi: 10.1158/1078-0432.CCR-24-0361.
7
Carcinogenic effect of human tumor-derived cell-free filtrates in nude mice.
Front Mol Biosci. 2024 Apr 18;11:1361377. doi: 10.3389/fmolb.2024.1361377. eCollection 2024.
8
Prognosis of immunotherapy for non-small cell lung cancer with loss of function.
J Thorac Dis. 2024 Jan 30;16(1):507-515. doi: 10.21037/jtd-23-1017. Epub 2024 Jan 11.
9
Genetically-engineered mouse models of small cell lung cancer: the next generation.
Oncogene. 2024 Feb;43(7):457-469. doi: 10.1038/s41388-023-02929-7. Epub 2024 Jan 8.
10
Combined small cell lung cancer: current progress and unmet needs.
Am J Cancer Res. 2023 Sep 15;13(9):3864-3874. eCollection 2023.

本文引用的文献

1
A molecular map of lung neuroendocrine neoplasms.
Gigascience. 2020 Oct 30;9(11). doi: 10.1093/gigascience/giaa112.
3
MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate.
Cancer Cell. 2020 Jul 13;38(1):60-78.e12. doi: 10.1016/j.ccell.2020.05.001. Epub 2020 May 30.
4
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
7
Current Diagnosis and Management of Small-Cell Lung Cancer.
Mayo Clin Proc. 2019 Aug;94(8):1599-1622. doi: 10.1016/j.mayocp.2019.01.034.
8
Integrative Genomic Characterization Identifies Molecular Subtypes of Lung Carcinoids.
Cancer Res. 2019 Sep 1;79(17):4339-4347. doi: 10.1158/0008-5472.CAN-19-0214. Epub 2019 Jul 12.
9
NRF2 Activation in Cancer: From DNA to Protein.
Cancer Res. 2019 Mar 1;79(5):889-898. doi: 10.1158/0008-5472.CAN-18-2723. Epub 2019 Feb 13.
10
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验