Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA.
Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA.
J Exp Biol. 2022 Jun 1;225(11). doi: 10.1242/jeb.244063. Epub 2022 Jun 9.
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved cellular stress response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNA interference (RNAi) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
具有复杂生命周期的生物表现出在发育过程中改变表型的显著能力,这可能是对发育过程中环境变化的一种进化适应。在完全变态昆虫中,环境敏感性能的发育变化,特别是热敏感性,已经得到了充分的记录。例如,成年期和幼年期的热性能表现出很少的遗传相关性(遗传解耦),并且可以独立进化,导致不同的热反应。然而,我们对这种遗传解耦是如何发生的知之甚少。我们检验了这样一个假设,即热生理学的遗传解耦是由生命阶段之间生理学的根本差异驱动的,尽管存在潜在的保守的细胞应激反应。我们使用 RNAseq 比较了黑腹果蝇幼虫和成虫对冷应激的转录表达,并使用 RNA 干扰(RNAi)来测试敲低九个目标基因是否会对幼虫和成虫的耐寒性产生不同的影响。幼虫和成虫在暴露于-5°C 期间和之后的转录组反应在身份和时间动态上都有很大的不同。此外,我们分析了来自 FlyAtlas 2 数据的差异表达转录本的组织特异性,并得出结论,转录的阶段特异性差异不是简单地由组织组成的差异驱动的。此外,靶基因的 RNAi 导致耐寒性的很大程度上是阶段特异性的,有时是性别特异性的。综合证据表明,热生理学在基因表达水平上很大程度上是阶段特异性的,因此自然选择可能在不同生命阶段的独立热适应过程中作用于不同的基因座。