Suppr超能文献

海马体和楔前叶中时间社区结构的表征预测归纳推理决策。

Representations of Temporal Community Structure in Hippocampus and Precuneus Predict Inductive Reasoning Decisions.

作者信息

Pudhiyidath Athula, Morton Neal W, Viveros Duran Rodrigo, Schapiro Anna C, Momennejad Ida, Hinojosa-Rowland Demitrius M, Molitor Robert J, Preston Alison R

机构信息

The University of Texas at Austin.

University of Pennsylvania, Philadelphia.

出版信息

J Cogn Neurosci. 2022 Sep 1;34(10):1736-1760. doi: 10.1162/jocn_a_01864.

Abstract

Our understanding of the world is shaped by inferences about underlying structure. For example, at the gym, you might notice that the same people tend to arrive around the same time and infer that they are friends that work out together. Consistent with this idea, after participants are presented with a temporal sequence of objects that follows an underlying community structure, they are biased to infer that objects from the same community share the same properties. Here, we used fMRI to measure neural representations of objects after temporal community structure learning and examine how these representations support inference about object relationships. We found that community structure learning affected inferred object similarity: When asked to spatially group items based on their experience, participants tended to group together objects from the same community. Neural representations in perirhinal cortex predicted individual differences in object grouping, suggesting that high-level object representations are affected by temporal community learning. Furthermore, participants were biased to infer that objects from the same community would share the same properties. Using computational modeling of temporal learning and inference decisions, we found that inductive reasoning is influenced by both detailed knowledge of temporal statistics and abstract knowledge of the temporal communities. The fidelity of temporal community representations in hippocampus and precuneus predicted the degree to which temporal community membership biased reasoning decisions. Our results suggest that temporal knowledge is represented at multiple levels of abstraction, and that perirhinal cortex, hippocampus, and precuneus may support inference based on this knowledge.

摘要

我们对世界的理解是由对潜在结构的推断塑造的。例如,在健身房,你可能会注意到同一群人往往在同一时间到达,并推断他们是一起锻炼的朋友。与此观点一致的是,在向参与者展示遵循潜在社区结构的对象的时间序列后,他们倾向于推断来自同一社区的对象具有相同的属性。在这里,我们使用功能磁共振成像(fMRI)来测量时间社区结构学习后对象的神经表征,并研究这些表征如何支持对对象关系的推断。我们发现社区结构学习影响推断的对象相似性:当被要求根据他们的经验对项目进行空间分组时,参与者倾向于将来自同一社区的对象归为一组。嗅周皮质中的神经表征预测了对象分组中的个体差异,这表明高级对象表征受时间社区学习的影响。此外,参与者倾向于推断来自同一社区的对象会具有相同的属性。通过对时间学习和推理决策进行计算建模,我们发现归纳推理受时间统计的详细知识和时间社区的抽象知识的影响。海马体和楔前叶中时间社区表征的保真度预测了时间社区成员身份对推理决策产生偏差的程度。我们的结果表明,时间知识在多个抽象层次上得到表征,并且嗅周皮质、海马体和楔前叶可能支持基于这些知识的推理。

相似文献

引用本文的文献

4
The role of memory in affirming-the-consequent fallacy.记忆在肯定后件式谬误中的作用。
iScience. 2025 Jan 25;28(2):111889. doi: 10.1016/j.isci.2025.111889. eCollection 2025 Feb 21.
6
Replay shapes abstract cognitive maps for efficient social navigation.重放塑造用于高效社交导航的抽象认知图。
Nat Hum Behav. 2024 Nov;8(11):2156-2167. doi: 10.1038/s41562-024-01990-w. Epub 2024 Sep 19.
7
Neural Activity Differentiates Novel and Learned Event Boundaries.神经活动区分新的和已学习的事件边界。
J Neurosci. 2024 Sep 18;44(38):e2246232024. doi: 10.1523/JNEUROSCI.2246-23.2024.
9
The successor representation subserves hierarchical abstraction for goal-directed behavior.后继表示服务于目标导向行为的层次抽象。
PLoS Comput Biol. 2024 Feb 20;20(2):e1011312. doi: 10.1371/journal.pcbi.1011312. eCollection 2024 Feb.
10
Abstract cognitive maps of social network structure aid adaptive inference.抽象的社会网络结构认知图有助于适应性推理。
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2310801120. doi: 10.1073/pnas.2310801120. Epub 2023 Nov 14.

本文引用的文献

2
Learning Structures: Predictive Representations, Replay, and Generalization.学习结构:预测性表征、回放与泛化。
Curr Opin Behav Sci. 2020 Apr;32:155-166. doi: 10.1016/j.cobeha.2020.02.017. Epub 2020 May 5.
4
Concept formation as a computational cognitive process.概念形成作为一种计算认知过程。
Curr Opin Behav Sci. 2021 Apr;38:83-89. doi: 10.1016/j.cobeha.2020.12.005. Epub 2021 Jan 8.
7
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
8
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验