Becher Manuel, Horstmann Robin, Kloth Sebastian, Rössler Ernst A, Vogel Michael
Anorganische Chemie 3, Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany.
Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
J Phys Chem Lett. 2022 May 26;13(20):4556-4562. doi: 10.1021/acs.jpclett.2c00821. Epub 2022 May 17.
We study the relation between the translational and rotational motions of liquids, which is anticipated in the framework of the Stokes-Einstein-Debye (SED) treatment. For this purpose, we exploit the fact that H field-cycling nuclear magnetic resonance relaxometry and molecular dynamics simulations provide access to both modes of motion. The experimental and computational findings are fully consistent and show that the time-scale separation between translation and rotation increases from the van der Waals liquid -terphenyl over ethylene glycol to the hydrogen-bonded liquid glycerol, indicating an increasing degree of breakdown of the SED relation. Furthermore, the simulation results for two ethylene glycol models with different molecular conformations indicate that the translation is more retarded than the rotation when the density of intermolecular hydrogen bonds increases. We conclude that an increasing connectivity of a hydrogen-bond network leads to an increasing time-scale separation and, thus, to a stronger SED violation.
我们研究了液体平移运动与旋转运动之间的关系,这一关系在斯托克斯 - 爱因斯坦 - 德拜(SED)理论框架中有相关预测。为此,我们利用了这样一个事实:磁场循环核磁共振弛豫测量法和分子动力学模拟能够获取这两种运动模式。实验和计算结果完全一致,结果表明,从范德华液体 - 三联苯到乙二醇再到氢键液体甘油,平移和旋转之间的时间尺度分离逐渐增大,这表明SED关系的破坏程度在增加。此外,对具有不同分子构象的两种乙二醇模型的模拟结果表明,当分子间氢键密度增加时,平移比旋转受到的阻碍更大。我们得出结论,氢键网络连通性的增加会导致时间尺度分离增大,从而导致更强的SED关系违背。