Am Nat. 2022 Jun;199(6):869-880. doi: 10.1086/717436. Epub 2022 Apr 19.
AbstractStudies of coevolution in the wild have largely focused on reciprocally specialized species pairs with striking and exaggerated phenotypes. Textbook examples include interactions between toxic newts and their garter snake predators, long-tongued flies and the flowers they pollinate, and weevils with elongated rostra used to bore through the defensive pericarp of their host plants. Although these studies have laid a foundation for understanding coevolution in the wild, they have also contributed to the widespread impression that coevolution is a rare and quirky sideshow to the day-to-day grind of ecology and evolution. In this perspective, we argue that the focus of coevolution has been biased toward the obvious and ignored the cryptic. We have focused on the obvious-studies of reciprocally specialized species pairs with exaggerated phenotypes-mainly because we have lacked the statistical tools required to study coevolution in more generalized and phenotypically mundane systems. Building from well-established coevolutionary theory, we illustrate how model-based approaches can be used to remove this barrier and begin estimating the strength of coevolutionary selection indirectly using routinely collected data, thus uncovering cryptic coevolution in more typical communities. By allowing the distribution of coevolutionary selection to be estimated across genomes, phylogenies, and communities and over deep timescales, these novel approaches have the potential to revolutionize the way we study coevolution. As we develop a road map to these next-generation approaches, we highlight recent studies making notable progress in this direction.
摘要 野外协同进化的研究主要集中在具有显著和夸张表型的互惠专业化物种对上。教科书上的例子包括有毒蝾螈与其加特蛇捕食者之间的相互作用、长舌蝇与其授粉的花朵之间的相互作用,以及长喙象鼻虫用于刺穿其宿主植物防御性果皮的喙。虽然这些研究为理解野外协同进化奠定了基础,但它们也导致了人们普遍认为协同进化是生态和进化日常运作中的罕见和奇特的副产物。从这个角度来看,我们认为协同进化的重点一直偏向于明显的方面,而忽略了隐蔽的方面。我们一直专注于明显的研究——互惠专业化物种对具有夸张表型——主要是因为我们缺乏研究更普遍和表型上平凡系统中协同进化所需的统计工具。从成熟的协同进化理论出发,我们说明了如何使用基于模型的方法来消除这一障碍,并利用常规收集的数据间接估计协同进化选择的强度,从而在更典型的群落中揭示隐蔽的协同进化。通过允许在基因组、系统发育和群落以及长时间尺度上估计协同进化选择的分布,这些新方法有可能彻底改变我们研究协同进化的方式。在我们为这些下一代方法制定路线图时,我们强调了最近在这方面取得显著进展的研究。