Suppr超能文献

大规模跨数字重建神经形态相似性搜索。

Large scale similarity search across digital reconstructions of neural morphology.

机构信息

Center for Neural Informatics, Structures, & Plasticity and Bioengineering Department, George Mason University, Mail Stop 2A1, 4400 University Dr, Fairfax, VA, United States of America.

Center for Neural Informatics, Structures, & Plasticity and Bioengineering Department, George Mason University, Mail Stop 2A1, 4400 University Dr, Fairfax, VA, United States of America.

出版信息

Neurosci Res. 2022 Aug;181:39-45. doi: 10.1016/j.neures.2022.05.004. Epub 2022 May 14.

Abstract

Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access.

摘要

神经系统的大多数功能都依赖于神经元和神经胶质的形态。显微镜成像和追踪软件的不断进步,为树突、轴突和突起的分支的 3D 重建提供了越来越丰富的资源,从而可以对其进行详细研究。然而,仍然缺乏有效、大规模的方法来根据相似性对神经形态进行排序。使用 NeuroMorpho.Org 数据库,我们提出了一种相似性搜索软件,能够快速比较来自任何物种、脑区、细胞类型和制备方案的数十万神经重建。我们比较了不同形态测量的性能:1)由 L-Measure 计算的总结形态计量学,2)持久向量,分支结构的向量化描述符,3)两者的组合。在所有情况下,我们还研究了应用主成分分析(PCA)进行降维的影响。我们通过衡量按视觉相似性对神经元进行排序的能力来评估定性性能。此外,我们通过检查解释方差来量化信息量,并对识别同一标本的偶尔重复重建的能力进行基准测试。我们还比较了使用此基准测试选择主成分数量的两种不同方法。结果表明,将总结形态计量学和持久向量与应用 PCA 相结合,使用基于最大似然的自动维度选择提供了丰富的信息特征,能够有效地、精确地比较神经形态。我们已经通过用户友好的图形界面和用于编程访问的 API 将相似性搜索部署为开源在线软件。

相似文献

引用本文的文献

1
Accelerating the continuous community sharing of digital neuromorphology data.加速数字神经形态学数据的持续社区共享。
FASEB Bioadv. 2024 Jun 17;6(7):207-221. doi: 10.1096/fba.2024-00048. eCollection 2024 Jul.

本文引用的文献

1
Quantitative neuronal morphometry by supervised and unsupervised learning.基于监督和无监督学习的定量神经元形态计量学。
STAR Protoc. 2021 Sep 30;2(4):100867. doi: 10.1016/j.xpro.2021.100867. eCollection 2021 Dec 17.
2
Highlights from the Era of Open Source Web-Based Tools.开源网络工具时代的亮点
J Neurosci. 2021 Feb 3;41(5):927-936. doi: 10.1523/JNEUROSCI.1657-20.2020. Epub 2021 Jan 20.
6
A Commitment to Open Source in Neuroscience.神经科学中的开源承诺。
Neuron. 2017 Dec 6;96(5):964-965. doi: 10.1016/j.neuron.2017.10.013.
7
A Topological Representation of Branching Neuronal Morphologies.分支神经元形态的拓扑表示。
Neuroinformatics. 2018 Jan;16(1):3-13. doi: 10.1007/s12021-017-9341-1.
8
Metrics for comparing neuronal tree shapes based on persistent homology.基于持久同调比较神经元树状形态的指标。
PLoS One. 2017 Aug 15;12(8):e0182184. doi: 10.1371/journal.pone.0182184. eCollection 2017.
9
Win-win data sharing in neuroscience.神经科学中的双赢数据共享
Nat Methods. 2017 Jan 31;14(2):112-116. doi: 10.1038/nmeth.4152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验