Suppr超能文献

BigNeuron:一个基准资源,用于评估和预测在光显微镜数据集上自动追踪神经元的算法的性能。

BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets.

机构信息

Institute for Brain and Intelligence, Southeast University, Nanjing, China.

Microsoft Corporation, Redmond, WA, USA.

出版信息

Nat Methods. 2023 Jun;20(6):824-835. doi: 10.1038/s41592-023-01848-5. Epub 2023 Apr 17.

Abstract

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.

摘要

BigNeuron 是一个开放的社区基准测试平台,其目标是为准确和快速的自动神经元追踪设定开放标准。我们收集了来自多个物种的各种图像数据集,这些数据集代表了许多对神经元追踪感兴趣的神经科学实验室所获得的数据。在这里,我们报告了一部分可用成像数据集的生成黄金标准手动注释,并对 35 种自动追踪算法进行了追踪质量的量化。生成这种手工制作的多样化数据集的目的是推进追踪算法的发展,并实现可推广的基准测试。我们将图像质量特征与数据一起汇集到一个交互式网络应用程序中,该应用程序使用户和开发人员能够执行主成分分析、t 分布随机邻域嵌入、相关性和聚类、成像和追踪数据的可视化以及在用户定义的数据集子集上对自动追踪算法进行基准测试。图像质量指标解释了数据中大部分的方差,其次是与神经元大小相关的神经形态学特征。我们观察到,不同的算法可以提供互补信息以获得准确的结果,并开发了一种迭代组合方法和生成共识重建的方法。获得的共识树提供了神经元结构的真实估计,这些估计在噪声数据集中通常优于单个算法。然而,在特定的成像条件下,特定的算法可能优于共识树策略。最后,为了帮助用户在没有手动注释进行比较的情况下预测最准确的自动追踪结果,我们使用支持向量机回归来预测给定图像体积和一组自动追踪的重建质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验