Suppr超能文献

MAMnet:基于长读长和深度学习方法检测和基因分型缺失和插入。

MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach.

机构信息

College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454003, China.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac195.

Abstract

Structural variations (SVs) play important roles in human genetic diversity; deletions and insertions are two common types of SVs that have been proven to be associated with genetic diseases. Hence, accurately detecting and genotyping SVs is significant for disease research. Despite the fact that long-read sequencing technologies have improved the field of SV detection and genotyping, there are still some challenges that prevent satisfactory results from being obtained. In this paper, we propose MAMnet, a fast and scalable SV detection and genotyping method based on long reads and a combination of convolutional neural network and long short-term network. MAMnet uses a deep neural network to implement sensitive SV detection with a novel prediction strategy. On real long-read sequencing datasets, we demonstrate that MAMnet outperforms Sniffles, SVIM, cuteSV and PBSV in terms of their F1 scores while achieving better scaling performance. The source code is available from https://github.com/micahvista/MAMnet.

摘要

结构变异(SVs)在人类遗传多样性中起着重要作用;缺失和插入是两种常见的 SV 类型,已被证明与遗传疾病有关。因此,准确检测和基因分型 SV 对于疾病研究具有重要意义。尽管长读测序技术提高了 SV 检测和基因分型领域的水平,但仍存在一些挑战,无法获得满意的结果。在本文中,我们提出了 MAMnet,这是一种基于长读和卷积神经网络与长短时网络相结合的快速可扩展的 SV 检测和基因分型方法。MAMnet 使用深度神经网络实现了具有新颖预测策略的敏感 SV 检测。在真实的长读测序数据集上的实验结果表明,MAMnet 在 F1 分数方面优于 Sniffles、SVIM、cuteSV 和 PBSV,同时具有更好的扩展性能。源代码可从 https://github.com/micahvista/MAMnet 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验