Suppr超能文献

GKNnet:一种基于关系图卷积网络且带有知识增强激活层的微生物结构变异检测方法。

GKNnet: an relational graph convolutional network-based method with knowledge-augmented activation layer for microbial structural variation detection.

作者信息

Guo Fengyi, Li Yuanbo, Zhao Hongyuan, Liu Xiaogang, Mao Jian, Ma Dongna, Liu Shuangping

机构信息

School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu 214122, China.

National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu 214122, China.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf200.

Abstract

Structural variants (SVs) in microbial genomes play a critical role in phenotypic changes, environmental adaptation, and species evolution, with deletion variations particularly closely linked to phenotypic traits. Therefore, accurate and comprehensive identification of deletion variations is essential. Although long-read sequencing technology can detect more SVs, its high error rate introduces substantial noise, leading to high false-positive and low recall rates in existing SV detection algorithms. This paper presents an SV detection method based on graph convolutional networks (GCNs). The model first represents node features through a heterogeneous graph, leveraging the GCN to precisely identify variant regions. Additionally, a knowledge-augmented activation layer (KANLayer) with a learnable activation function is introduced to reduce noise around variant regions, thereby improving model precision and reducing false positives. A clustering algorithm then aggregates multiple overlapping regions near the variant center into a single accurate SV interval, further enhancing recall. Validation on both simulated and real datasets demonstrates that our method achieves superior F1 scores compared to benchmark methods (cuteSV, Sniffles, Svim, and Pbsv), highlighting its advantage and robustness in SV detection and offering an innovative solution for microbial genome structural variation research.

摘要

微生物基因组中的结构变异(SVs)在表型变化、环境适应和物种进化中起着关键作用,其中缺失变异与表型特征的联系尤为紧密。因此,准确全面地识别缺失变异至关重要。尽管长读长测序技术能够检测到更多的SVs,但其高错误率会引入大量噪声,导致现有SV检测算法的假阳性率高且召回率低。本文提出了一种基于图卷积网络(GCNs)的SV检测方法。该模型首先通过异构图来表示节点特征,利用GCN精确识别变异区域。此外,引入了具有可学习激活函数的知识增强激活层(KANLayer),以减少变异区域周围的噪声,从而提高模型精度并降低假阳性率。然后,一种聚类算法将变异中心附近的多个重叠区域聚合为一个准确的SV区间,进一步提高召回率。在模拟数据集和真实数据集上的验证表明,与基准方法(cuteSV、Sniffles、Svim和Pbsv)相比,我们的方法获得了更高的F1分数,突出了其在SV检测中的优势和稳健性,并为微生物基因组结构变异研究提供了一种创新解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a8f/12052243/45c281e3f093/bbaf200f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验