Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
Sci Rep. 2022 May 17;12(1):8137. doi: 10.1038/s41598-022-11549-2.
Major vascular injury resulting in uncontrolled bleeding is a catastrophic and often fatal complication of minimally invasive surgery. At the outset of these events, surgeons do not know how much blood will be lost or whether they will successfully control the hemorrhage (achieve hemostasis). We evaluate the ability of a deep learning neural network (DNN) to predict hemostasis control ability using the first minute of surgical video and compare model performance with human experts viewing the same video. The publicly available SOCAL dataset contains 147 videos of attending and resident surgeons managing hemorrhage in a validated, high-fidelity cadaveric simulator. Videos are labeled with outcome and blood loss (mL). The first minute of 20 videos was shown to four, blinded, fellowship trained skull-base neurosurgery instructors, and to SOCALNet (a DNN trained on SOCAL videos). SOCALNet architecture included a convolutional network (ResNet) identifying spatial features and a recurrent network identifying temporal features (LSTM). Experts independently assessed surgeon skill, predicted outcome and blood loss (mL). Outcome and blood loss predictions were compared with SOCALNet. Expert inter-rater reliability was 0.95. Experts correctly predicted 14/20 trials (Sensitivity: 82%, Specificity: 55%, Positive Predictive Value (PPV): 69%, Negative Predictive Value (NPV): 71%). SOCALNet correctly predicted 17/20 trials (Sensitivity 100%, Specificity 66%, PPV 79%, NPV 100%) and correctly identified all successful attempts. Expert predictions of the highest and lowest skill surgeons and expert predictions reported with maximum confidence were more accurate. Experts systematically underestimated blood loss (mean error - 131 mL, RMSE 350 mL, R 0.70) and fewer than half of expert predictions identified blood loss > 500 mL (47.5%, 19/40). SOCALNet had superior performance (mean error - 57 mL, RMSE 295 mL, R 0.74) and detected most episodes of blood loss > 500 mL (80%, 8/10). In validation experiments, SOCALNet evaluation of a critical on-screen surgical maneuver and high/low-skill composite videos were concordant with expert evaluation. Using only the first minute of video, experts and SOCALNet can predict outcome and blood loss during surgical hemorrhage. Experts systematically underestimated blood loss, and SOCALNet had no false negatives. DNNs can provide accurate, meaningful assessments of surgical video. We call for the creation of datasets of surgical adverse events for quality improvement research.
主要血管损伤导致无法控制的出血是微创外科的一种灾难性且经常致命的并发症。在这些事件开始时,外科医生不知道会损失多少血液,也不知道他们是否能够成功控制出血(实现止血)。我们评估了深度学习神经网络(DNN)使用手术视频的前一分钟来预测止血控制能力的能力,并将模型性能与观看相同视频的人类专家进行了比较。可公开获得的 SOCAL 数据集包含 147 个主治医生和住院医生在经过验证的高保真尸体模拟器中管理出血的视频。视频标记有结果和失血量(mL)。20 个视频的前一分钟显示给了四位、盲目的、接受过神经外科奖学金培训的颅底神经外科导师,以及 SOCALNet(一个在 SOCAL 视频上训练的 DNN)。SOCALNet 架构包括一个识别空间特征的卷积网络(ResNet)和一个识别时间特征的循环网络(LSTM)。专家独立评估了外科医生的技能,预测了结果和失血量(mL)。将结果和失血量预测与 SOCALNet 进行了比较。专家间的可信度为 0.95。专家正确预测了 20 次试验中的 14 次(敏感性:82%,特异性:55%,阳性预测值(PPV):69%,阴性预测值(NPV):71%)。SOCALNet 正确预测了 20 次试验中的 17 次(敏感性 100%,特异性 66%,PPV 79%,NPV 100%),并正确识别了所有成功的尝试。专家对最高和最低技能外科医生的预测以及专家报告的最大信心预测更准确。专家系统地低估了失血量(平均误差-131mL,均方根误差 350mL,R 0.70),并且不到一半的专家预测确定失血量 > 500mL(47.5%,19/40)。SOCALNet 的性能更好(平均误差-57mL,均方根误差 295mL,R 0.74),并且检测到大多数失血量 > 500mL(80%,8/10)的情况。在验证实验中,SOCALNet 对屏幕上关键手术操作和高/低技能综合视频的评估与专家评估一致。仅使用视频的前一分钟,专家和 SOCALNet 就可以预测手术出血期间的结果和失血量。专家系统地低估了失血量,而 SOCALNet 没有假阴性。DNN 可以对手术视频进行准确、有意义的评估。我们呼吁创建手术不良事件数据集,以进行质量改进研究。