Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles.
Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles.
JAMA Netw Open. 2022 Mar 1;5(3):e223177. doi: 10.1001/jamanetworkopen.2022.3177.
Surgical data scientists lack video data sets that depict adverse events, which may affect model generalizability and introduce bias. Hemorrhage may be particularly challenging for computer vision-based models because blood obscures the scene.
To assess the utility of the Simulated Outcomes Following Carotid Artery Laceration (SOCAL)-a publicly available surgical video data set of hemorrhage complication management with instrument annotations and task outcomes-to provide benchmarks for surgical data science techniques, including computer vision instrument detection, instrument use metrics and outcome associations, and validation of a SOCAL-trained neural network using real operative video.
DESIGN, SETTING, AND PARTICIPANTS: For this quailty improvement study, a total of 75 surgeons with 1 to 30 years' experience (mean, 7 years) were filmed from January 1, 2017, to December 31, 2020, managing catastrophic surgical hemorrhage in a high-fidelity cadaveric training exercise at nationwide training courses. Videos were annotated from January 1 to June 30, 2021.
Surgeons received expert coaching between 2 trials.
Hemostasis within 5 minutes (task success, dichotomous), time to hemostasis (in seconds), and blood loss (in milliliters) were recorded. Deep neural networks (DNNs) were trained to detect surgical instruments in view. Model performance was measured using mean average precision (mAP), sensitivity, and positive predictive value.
SOCAL contains 31 443 frames with 65 071 surgical instrument annotations from 147 trials with associated surgeon demographic characteristics, time to hemostasis, and recorded blood loss for each trial. Computer vision-based instrument detection methods using DNNs trained on SOCAL achieved a mAP of 0.67 overall and 0.91 for the most common surgical instrument (suction). Hemorrhage control challenges standard object detectors: detection of some surgical instruments remained poor (mAP, 0.25). On real intraoperative video, the model achieved a sensitivity of 0.77 and a positive predictive value of 0.96. Instrument use metrics derived from the SOCAL video were significantly associated with performance (blood loss).
Hemorrhage control is a high-stakes adverse event that poses unique challenges for video analysis, but no data sets of hemorrhage control exist. The use of SOCAL, the first data set to depict hemorrhage control, allows the benchmarking of data science applications, including object detection, performance metric development, and identification of metrics associated with outcomes. In the future, SOCAL may be used to build and validate surgical data science models.
外科数据科学家缺乏描述不良事件的视频数据集,这可能影响模型的泛化能力并引入偏差。出血可能对基于计算机视觉的模型特别具有挑战性,因为血液会使场景变得模糊。
评估可公开获取的手术视频数据集 Simulated Outcomes Following Carotid Artery Laceration (SOCAL) 的效用,该数据集用于描述出血并发症管理,其中包括仪器注释和任务结果,以提供外科数据科学技术的基准,包括计算机视觉仪器检测、仪器使用指标和结果关联,以及使用真实手术视频验证经过 SOCAL 训练的神经网络。
设计、设置和参与者:在这项质量改进研究中,共有 75 名经验在 1 至 30 年之间的外科医生(平均 7 年)参加了 2017 年 1 月 1 日至 2020 年 12 月 31 日期间在全国培训课程中的高保真尸体培训练习中灾难性手术出血的管理。视频从 2021 年 1 月 1 日至 6 月 30 日进行了注释。
外科医生在两次试验之间接受专家辅导。
记录了 5 分钟内止血(任务成功,二分类)、达到止血的时间(以秒为单位)和失血量(以毫升为单位)。训练深度神经网络 (DNN) 以检测视图中的手术仪器。使用平均准确率 (mAP)、灵敏度和阳性预测值来衡量模型性能。
SOCAL 包含 31443 个框架,来自 147 次试验,其中包含与每位试验相关的外科医生人口统计学特征、达到止血的时间和记录的失血量,共 65071 个手术仪器注释。使用基于 DNN 的计算机视觉仪器检测方法达到了总体 mAP 为 0.67,最常见的手术仪器(吸引器)的 mAP 为 0.91。出血控制挑战标准目标检测:一些手术仪器的检测仍然很差(mAP,0.25)。在真实手术视频中,该模型的灵敏度为 0.77,阳性预测值为 0.96。从 SOCAL 视频中得出的仪器使用指标与性能(失血量)显著相关。
出血控制是一种高风险的不良事件,对视频分析提出了独特的挑战,但目前尚无出血控制的数据集。使用 SOCAL(第一个描述出血控制的数据集)可以为数据科学应用(包括目标检测、性能指标开发以及识别与结果相关的指标)提供基准。将来,SOCAL 可能会被用于构建和验证外科数据科学模型。