Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
Department of Cardiac Surgery, University Heart & Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Sci Rep. 2022 May 17;12(1):8193. doi: 10.1038/s41598-022-12085-9.
A short-term increase in ventricular filling leads to an immediate (Frank-Starling mechanism) and a slower (Anrep effect) rise in cardiac contractility, while long-term increased cardiac load (e.g., in arterial hypertension) decreases contractility. Whether these answers to mechanical tension are mediated by specific sensors in cardiomyocytes remains elusive. In this study, the piezo2 protein was evaluated as a potential mechanosensor. Piezo2 was found to be upregulated in various rat and mouse cardiac tissues upon mechanical or pharmacological stress. To investigate its function, C57BL/6J mice with homozygous cardiomyocyte-specific piezo2 knockout [Piezo2-KO] were created. To this end, α-MHC-Cre mice were crossed with homozygous "floxed" piezo2 mice. α-MHC-Cre mice crossed with wildtype mice served as controls [WT-Cre]. In cardiomyocytes of Piezo2-KO mice, piezo2 mRNA was reduced by > 90% and piezo2 protein was not detectable. Piezo2-KO mice displayed no morphological abnormalities or altered cardiac function under nonstressed conditions. In a subsequent step, hearts of Piezo2-KO or WT-Cre-mice were stressed by either three weeks of increased afterload (angiotensin II, 2.5 mg/kg/day) or one week of hypercontractility (isoprenaline, 30 mg/kg/day). As expected, angiotensin II treatment in WT-Cre-mice resulted in higher heart and lung weight (per body weight, + 38%, + 42%), lower ejection fraction and cardiac output (- 30%, - 39%) and higher left ventricular anterior and posterior wall thickness (+ 34%, + 37%), while isoprenaline led to higher heart weight (per body weight, + 25%) and higher heart rate and cardiac output (+ 24%, + 54%). The Piezo2-KO mice reacted similarly with the exception that the angiotensin II-induced increases in wall thickness were blunted and the isoprenaline-induced increase in cardiac output was slightly less pronounced. As cardiac function was neither severely affected under basal nor under stressed conditions in Piezo2-KO mice, we conclude that piezo2 is not an indispensable mechanosensor in cardiomyocytes.
短期增加心室充盈会导致心肌收缩力立即(Frank-Starling 机制)和缓慢(Anrep 效应)升高,而长期增加心脏负荷(例如,在动脉高血压)会降低收缩力。机械张力的这些反应是否通过心肌细胞中的特定传感器介导仍然难以捉摸。在这项研究中,评估了 piezo2 蛋白作为潜在的机械传感器。在各种大鼠和小鼠心脏组织中,机械或药理学应激会导致 piezo2 上调。为了研究其功能,创建了具有同源性心肌细胞特异性 piezo2 敲除 [Piezo2-KO] 的 C57BL/6J 小鼠。为此,将α-MHC-Cre 小鼠与纯合“floxed”piezo2 小鼠交配。α-MHC-Cre 小鼠与野生型小鼠交配作为对照 [WT-Cre]。在 Piezo2-KO 小鼠的心肌细胞中,piezo2 mRNA 减少了>90%,并且无法检测到 piezo2 蛋白。Piezo2-KO 小鼠在非应激条件下没有形态异常或改变的心脏功能。在随后的步骤中,通过三周的后负荷增加(血管紧张素 II,2.5mg/kg/天)或一周的高收缩力(异丙肾上腺素,30mg/kg/天)对 Piezo2-KO 或 WT-Cre-小鼠的心脏进行应激处理。正如预期的那样,血管紧张素 II 处理在 WT-Cre-小鼠中导致更高的心脏和肺重量(按体重计,+38%,+42%),更低的射血分数和心输出量(-30%,-39%)和更高的左心室前壁和后壁厚度(+34%,+37%),而异丙肾上腺素导致更高的心脏重量(按体重计,+25%)和更高的心率和心输出量(+24%,+54%)。Piezo2-KO 小鼠的反应类似,只是血管紧张素 II 诱导的壁厚度增加减弱,异丙肾上腺素诱导的心输出量增加稍低。由于 Piezo2-KO 小鼠在基础和应激条件下的心脏功能均未受到严重影响,因此我们得出结论,piezo2 不是心肌细胞中不可或缺的机械传感器。