Suppr超能文献

机械敏感性 Piezo1 通道对于骨形成是必需的。

The mechanosensitive Piezo1 channel is required for bone formation.

机构信息

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.

State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.

出版信息

Elife. 2019 Jul 10;8:e47454. doi: 10.7554/eLife.47454.

Abstract

Mechanical load of the skeleton system is essential for the development, growth, and maintenance of bone. However, the molecular mechanism by which mechanical stimuli are converted into osteogenesis and bone formation remains unclear. Here we report that Piezo1, a bona fide mechanotransducer that is critical for various biological processes, plays a critical role in bone formation. Knockout of Piezo1 in osteoblast lineage cells disrupts the osteogenesis of osteoblasts and severely impairs bone structure and strength. Bone loss that is induced by mechanical unloading is blunted in knockout mice. Intriguingly, simulated microgravity treatment reduced the function of osteoblasts by suppressing the expression of Piezo1. Furthermore, osteoporosis patients show reduced expression of Piezo1, which is closely correlated with osteoblast dysfunction. These data collectively suggest that Piezo1 functions as a key mechanotransducer for conferring mechanosensitivity to osteoblasts and determining mechanical-load-dependent bone formation, and represents a novel therapeutic target for treating osteoporosis or mechanical unloading-induced severe bone loss.

摘要

骨骼系统的机械负荷对于骨骼的发育、生长和维持至关重要。然而,机械刺激如何转化为成骨和骨形成的分子机制仍不清楚。在这里,我们报告 Piezo1,一种对于各种生物过程至关重要的真正的机械转导蛋白,在骨形成中起着关键作用。成骨细胞谱系细胞中 Piezo1 的敲除破坏了成骨细胞的成骨作用,并严重损害了骨结构和强度。机械去负荷诱导的骨丢失在敲除小鼠中减弱。有趣的是,模拟微重力处理通过抑制 Piezo1 的表达来降低成骨细胞的功能。此外,骨质疏松症患者的 Piezo1 表达减少,这与成骨细胞功能障碍密切相关。这些数据共同表明,Piezo1 作为一种关键的机械转导蛋白,赋予成骨细胞对机械刺激的敏感性,并决定机械负荷依赖性的骨形成,是治疗骨质疏松症或机械去负荷引起的严重骨丢失的新的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f430/6685704/526050cc85e4/elife-47454-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验