美国宾夕法尼亚州肺癌病例时空聚集性的识别:2010-2017 年。

Identification of spatio-temporal clusters of lung cancer cases in Pennsylvania, USA: 2010-2017.

机构信息

Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

BMC Cancer. 2022 May 17;22(1):555. doi: 10.1186/s12885-022-09652-8.

Abstract

BACKGROUND

It is known that geographic location plays a role in developing lung cancer. The objectives of this study were to examine spatio-temporal patterns of lung cancer incidence in Pennsylvania, to identify geographic clusters of high incidence, and to compare demographic characteristics and general physical and mental health characteristics in those areas.

METHOD

We geocoded the residential addresses at the time of diagnosis for lung cancer cases in the Pennsylvania Cancer Registry diagnosed between 2010 and 2017. Relative risks over the expected case counts at the census tract level were estimated using a log-linear Poisson model that allowed for spatial and temporal effects. Spatio-temporal clusters with high incidence were identified using scan statistics. Demographics obtained from the 2011-2015 American Community Survey and health variables obtained from 2020 CDC PLACES database were compared between census tracts that were part of clusters versus those that were not.

RESULTS

Overall, the age-adjusted incidence rates and the relative risk of lung cancer decreased from 2010 to 2017 with no statistically significant space and time interaction. The analyses detected 5 statistically significant clusters over the 8-year study period. Cluster 1, the most likely cluster, was in southeastern PA including Delaware, Montgomery, and Philadelphia Counties from 2010 to 2013 (log likelihood ratio = 136.6); Cluster 2, the cluster with the largest area was in southwestern PA in the same period including Allegheny, Fayette, Greene, Washington, and Westmoreland Counties (log likelihood ratio = 78.6). Cluster 3 was in Mifflin County from 2014 to 2016 (log likelihood ratio = 25.3), Cluster 4 was in Luzerne County from 2013 to 2016 (log likelihood ratio = 18.1), and Cluster 5 was in Dauphin, Cumberland, and York Counties limited to 2010 to 2012 (log likelihood ratio = 17.9). Census tracts that were part of the high incidence clusters tended to be densely populated, had higher percentages of African American and residents that live below poverty line, and had poorer mental health and physical health when compared to the non-clusters (all p < 0.001).

CONCLUSIONS

These high incidence areas for lung cancer warrant further monitoring for other individual and environmental risk factors and screening efforts so lung cancer cases can be identified early and more efficiently.

摘要

背景

地理位置在肺癌的发生发展中起着重要作用。本研究的目的是检验宾夕法尼亚州肺癌发病率的时空模式,确定高发病率的地理聚集区,并比较这些地区的人口统计学特征和一般身心健康特征。

方法

我们对宾夕法尼亚癌症登记处 2010 年至 2017 年间诊断的肺癌病例的诊断时居住地址进行了地理编码。使用允许空间和时间效应的对数线性泊松模型估计了在普查区水平上的预期病例数的相对风险。使用扫描统计方法确定高发病率的时空聚集区。比较了处于聚集区的普查区和非聚集区的 2011-2015 年美国社区调查获得的人口统计学数据和 2020 年 CDC PLACES 数据库获得的健康变量。

结果

总体而言,调整年龄后的发病率和肺癌的相对风险从 2010 年到 2017 年下降,没有统计学意义的空间和时间交互作用。在 8 年的研究期间,共检测到 5 个具有统计学意义的聚集区。最有可能的聚集区 1 位于宾夕法尼亚州东南部,包括特拉华州、蒙哥马利县和费城县,从 2010 年到 2013 年(对数似然比=136.6);面积最大的聚集区 2 位于宾夕法尼亚州西南部,同期包括阿勒格尼县、费耶特县、格林县、华盛顿县和威斯特摩兰县(对数似然比=78.6)。聚集区 3 位于米夫林县,时间为 2014 年至 2016 年(对数似然比=25.3);聚集区 4 位于卢泽恩县,时间为 2013 年至 2016 年(对数似然比=18.1);聚集区 5 位于达芬、坎伯兰和约克县,仅限于 2010 年至 2012 年(对数似然比=17.9)。属于高发病率聚集区的普查区往往人口密度较高,非裔美国人比例较高,生活在贫困线以下的居民比例较高,心理健康和身体健康状况较差(均 P<0.001)。

结论

这些肺癌高发地区需要进一步监测其他个体和环境危险因素,并进行筛查工作,以便更早、更有效地发现肺癌病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f88e/9112439/711bf055f0ed/12885_2022_9652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索