Suppr超能文献

将 H3.3K36M 作为一种工具来研究癌细胞中 H3K36 甲基化。

Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells.

机构信息

a Department of Biology , Stanford University , Stanford , California , USA.

出版信息

Epigenetics. 2017;12(11):917-922. doi: 10.1080/15592294.2017.1377870. Epub 2017 Dec 11.

Abstract

Recurrent mutations at key lysine residues in the histone variant H3.3 are thought to play an etiologic role in the development of distinct subsets of pediatric gliomas and bone and cartilage cancers. H3.3K36M is one such mutation that was originally identified in chondroblastomas, and its expression in these tumors contributes to oncogenic reprogramming by triggering global depletion of dimethylation and trimethylation at H3K36 with a concomitant increase in the levels of H3K27 trimethylation. H3.3K36M expression can also cause epigenomic changes in cell types beyond chondrocytic cells. Here we show that expression of H3.3K36M in HT1080 fibrosarcoma cancer cells severely impairs cellular proliferation, which contrasts its role in promoting transformation of chondrocytic cells. H3.3K36M-associated cellular toxicity phenocopies the specific depletion of H3K36me2, but not loss of H3K36me3. We further find that the H3K36me2-associated toxicity is largely independent of changes in H3K27me3. Together, our findings lend support to the argument that H3K36me2 has distinct roles in cancer cells independent of H3K36me3 and H3K27me3, and highlight the use of H3.3K36M as an epigenetic tool to study H3K36 and H3K27 methylation dynamics in diverse cell types.

摘要

组蛋白变体 H3.3 中关键赖氨酸残基的反复突变被认为在儿童神经胶质瘤和骨与软骨癌的不同亚群的发展中起病因作用。H3.3K36M 是最初在软骨母细胞瘤中发现的这样一种突变,其在这些肿瘤中的表达通过触发 H3K36 上的二甲基化和三甲基化的全局耗竭,并伴有 H3K27 三甲基化水平的增加,从而促进致癌重编程。H3.3K36M 的表达也可以在超出软骨细胞的细胞类型中引起表观基因组变化。在这里,我们表明 H3.3K36M 在 HT1080 纤维肉瘤癌细胞中的表达严重损害了细胞增殖,这与它在促进软骨细胞转化中的作用形成对比。H3.3K36M 相关的细胞毒性表型类似于 H3K36me2 的特异性耗竭,但不丢失 H3K36me3。我们进一步发现,H3K36me2 相关的毒性在很大程度上独立于 H3K27me3 的变化。总之,我们的研究结果支持这样一种观点,即 H3K36me2 在癌细胞中具有不同于 H3K36me3 和 H3K27me3 的独特作用,并强调了使用 H3.3K36M 作为一种表观遗传学工具来研究不同细胞类型中 H3K36 和 H3K27 甲基化动力学。

相似文献

1
Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells.
Epigenetics. 2017;12(11):917-922. doi: 10.1080/15592294.2017.1377870. Epub 2017 Dec 11.
3
Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells.
Cell Cycle. 2017 Oct 2;16(19):1781-1789. doi: 10.1080/15384101.2017.1281483. Epub 2017 Jan 27.
4
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
Mol Cell. 2024 Oct 17;84(20):3899-3915.e7. doi: 10.1016/j.molcel.2024.09.015. Epub 2024 Oct 4.
5
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas.
Cell Death Dis. 2021 Mar 24;12(4):311. doi: 10.1038/s41419-021-03597-9.
7
The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas.
Science. 2016 Jun 10;352(6291):1344-8. doi: 10.1126/science.aae0065. Epub 2016 May 26.
8
A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation.
Epigenetics. 2021 Oct;16(10):1123-1134. doi: 10.1080/15592294.2020.1841873. Epub 2020 Nov 16.
9
Structural and functional specificity of H3K36 methylation.
Epigenetics Chromatin. 2022 May 18;15(1):17. doi: 10.1186/s13072-022-00446-7.
10
Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells.
Acta Neuropathol Commun. 2020 Dec 7;8(1):219. doi: 10.1186/s40478-020-01092-4.

引用本文的文献

2
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
Mol Cell. 2024 Oct 17;84(20):3899-3915.e7. doi: 10.1016/j.molcel.2024.09.015. Epub 2024 Oct 4.
3
ATRX guards against aberrant differentiation in mesenchymal progenitor cells.
Nucleic Acids Res. 2024 May 22;52(9):4950-4968. doi: 10.1093/nar/gkae160.
4
The H3.3 K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation.
bioRxiv. 2023 Oct 14:2023.10.13.562147. doi: 10.1101/2023.10.13.562147.
5
The interplay between H3K36 methylation and DNA methylation in cancer.
Cancer Biol Med. 2023 Aug 18;20(8):545-52. doi: 10.20892/j.issn.2095-3941.2023.0234.
6
: a powerful model organism to explore histone modifications and their upstream regulations.
Epigenetics. 2023 Dec;18(1):2211362. doi: 10.1080/15592294.2023.2211362.
7
Oncohistones: Hijacking the histone code.
Annu Rev Cancer Biol. 2022 Apr;6:293-312. doi: 10.1146/annurev-cancerbio-070120-102521. Epub 2022 Jan 18.
8
Interplay between chromatin marks in development and disease.
Nat Rev Genet. 2022 Mar;23(3):137-153. doi: 10.1038/s41576-021-00416-x. Epub 2021 Oct 4.
9
mTORC1 stimulates cell growth through SAM synthesis and mA mRNA-dependent control of protein synthesis.
Mol Cell. 2021 May 20;81(10):2076-2093.e9. doi: 10.1016/j.molcel.2021.03.009. Epub 2021 Mar 22.

本文引用的文献

1
Oncogenic Mechanisms of Histone H3 Mutations.
Cold Spring Harb Perspect Med. 2017 Jan 3;7(1):a026443. doi: 10.1101/cshperspect.a026443.
2
The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas.
Science. 2016 Jun 10;352(6291):1344-8. doi: 10.1126/science.aae0065. Epub 2016 May 26.
3
Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape.
Science. 2016 May 13;352(6287):844-9. doi: 10.1126/science.aac7272.
7
Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2.
Science. 2015 Oct 16;350(6258):aac4383. doi: 10.1126/science.aac4383. Epub 2015 Oct 15.
8
BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing.
Mol Cell. 2014 Oct 23;56(2):298-310. doi: 10.1016/j.molcel.2014.08.022. Epub 2014 Sep 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验