Suppr超能文献

用于肾小球和患者水平疾病分类的可解释生物标志物。

Explainable Biomarkers for Automated Glomerular and Patient-Level Disease Classification.

机构信息

Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada.

Division of Nephrology, University Health Network, Toronto, Canada.

出版信息

Kidney360. 2021 Dec 9;3(3):534-545. doi: 10.34067/KID.0005102021. eCollection 2022 Mar 31.

Abstract

Pathologists use multiple microscopy modalities to assess renal biopsy specimens. Besides usual diagnostic features, some changes are too subtle to be properly defined. Computational approaches have the potential to systematically quantitate subvisual clues, provide pathogenetic insight, and link to clinical outcomes. To this end, a proof-of-principle study is presented demonstrating that explainable biomarkers through machine learning can distinguish between glomerular disorders at the light-microscopy level. The proposed system used image analysis techniques and extracted 233 explainable biomarkers related to color, morphology, and microstructural texture. Traditional machine learning was then used to classify minimal change disease (MCD), membranous nephropathy (MN), and thin basement membrane nephropathy (TBMN) diseases on a glomerular and patient-level basis. The final model combined the Gini feature importance set and linear discriminant analysis classifier. Six morphologic (nuclei-to-glomerular tuft area, nuclei-to-glomerular area, glomerular tuft thickness greater than ten, glomerular tuft thickness greater than three, total glomerular tuft thickness, and glomerular circularity) and four microstructural texture features (luminal contrast using wavelets, nuclei energy using wavelets, nuclei variance using color vector LBP, and glomerular correlation using GLCM) were, together, the best performing biomarkers. Accuracies of 77% and 87% were obtained for glomerular and patient-level classification, respectively. Computational methods, using explainable glomerular biomarkers, have diagnostic value and are compatible with our existing knowledge of disease pathogenesis. Furthermore, this algorithm can be applied to clinical datasets for novel prognostic and mechanistic biomarker discovery.

摘要

病理学家使用多种显微镜模式来评估肾活检标本。除了通常的诊断特征外,一些变化过于细微,无法正确定义。计算方法有可能系统地定量亚视觉线索,提供发病机制的见解,并与临床结果联系起来。为此,提出了一项原理验证研究,证明通过机器学习可以区分肾小球疾病在光镜水平上的解释性生物标志物。所提出的系统使用图像分析技术提取了 233 个与颜色、形态和微观结构纹理相关的可解释生物标志物。然后,传统的机器学习用于对肾小球和患者水平上的微小变化疾病(MCD)、膜性肾病(MN)和薄基底膜肾病(TBMN)疾病进行分类。最终模型结合了基尼特征重要性集和线性判别分析分类器。六个形态学(核-肾小球丛面积、核-肾小球面积、肾小球丛厚度大于 10、肾小球丛厚度大于 3、总肾小球丛厚度和肾小球圆形度)和四个微观结构纹理特征(使用小波的管腔对比度、使用小波的核能量、使用颜色向量 LBP 的核方差和使用 GLCM 的肾小球相关性)共同构成了表现最佳的生物标志物。肾小球和患者水平分类的准确率分别为 77%和 87%。使用可解释肾小球生物标志物的计算方法具有诊断价值,并且与我们对疾病发病机制的现有知识兼容。此外,该算法可应用于临床数据集,以发现新的预后和机制生物标志物。

相似文献

1
Explainable Biomarkers for Automated Glomerular and Patient-Level Disease Classification.
Kidney360. 2021 Dec 9;3(3):534-545. doi: 10.34067/KID.0005102021. eCollection 2022 Mar 31.
2
Machine learning in renal pathology.
Front Nephrol. 2022 Nov 29;2:1007002. doi: 10.3389/fneph.2022.1007002. eCollection 2022.
3
Thin basement membrane nephropathy cannot be diagnosed reliably in deparaffinized, formalin-fixed tissue.
Nephrol Dial Transplant. 2007 Apr;22(4):1228-32. doi: 10.1093/ndt/gfl838. Epub 2007 Feb 3.
6
Pattern of glomerular diseases in Oman: a study based on light microscopy and immunofluorescence.
Saudi J Kidney Dis Transpl. 2013 Mar;24(2):387-91. doi: 10.4103/1319-2442.109616.
7
The clinical features of thin basement membrane nephropathy.
Semin Nephrol. 2005 May;25(3):140-5. doi: 10.1016/j.semnephrol.2005.01.004.

引用本文的文献

1
Explainability of a Deep Learning-Based Classification Model for Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis.
Kidney Int Rep. 2024 Nov 14;10(2):457-465. doi: 10.1016/j.ekir.2024.11.005. eCollection 2025 Feb.
2
Machine learning in renal pathology.
Front Nephrol. 2022 Nov 29;2:1007002. doi: 10.3389/fneph.2022.1007002. eCollection 2022.
4
The fractal and textural analysis of glomeruli in obese and non-obese patients.
J Pathol Inform. 2022 Jun 22;13:100108. doi: 10.1016/j.jpi.2022.100108. eCollection 2022.

本文引用的文献

1
Glomerulosclerosis identification in whole slide images using semantic segmentation.
Comput Methods Programs Biomed. 2020 Feb;184:105273. doi: 10.1016/j.cmpb.2019.105273. Epub 2019 Dec 19.
2
Assessing the Impact of Color Normalization in Convolutional Neural Network-Based Nuclei Segmentation Frameworks.
Front Bioeng Biotechnol. 2019 Nov 1;7:300. doi: 10.3389/fbioe.2019.00300. eCollection 2019.
3
Computational Segmentation and Classification of Diabetic Glomerulosclerosis.
J Am Soc Nephrol. 2019 Oct;30(10):1953-1967. doi: 10.1681/ASN.2018121259. Epub 2019 Sep 5.
4
End-Stage Renal Disease and Mortality Outcomes Across Different Glomerulonephropathies in a Large Diverse US Population.
Mayo Clin Proc. 2018 Feb;93(2):167-178. doi: 10.1016/j.mayocp.2017.10.021. Epub 2018 Jan 24.
7
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data.
BMC Bioinformatics. 2017 Jan 3;18(1):9. doi: 10.1186/s12859-016-1423-9.
8
Influence of Texture and Colour in Breast TMA Classification.
PLoS One. 2015 Oct 29;10(10):e0141556. doi: 10.1371/journal.pone.0141556. eCollection 2015.
9
Improving the radiologist-CAD interaction: designing for appropriate trust.
Clin Radiol. 2015 Feb;70(2):115-22. doi: 10.1016/j.crad.2014.09.017. Epub 2014 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验