Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada.
Division of Nephrology, University Health Network, Toronto, Canada.
Kidney360. 2021 Dec 9;3(3):534-545. doi: 10.34067/KID.0005102021. eCollection 2022 Mar 31.
Pathologists use multiple microscopy modalities to assess renal biopsy specimens. Besides usual diagnostic features, some changes are too subtle to be properly defined. Computational approaches have the potential to systematically quantitate subvisual clues, provide pathogenetic insight, and link to clinical outcomes. To this end, a proof-of-principle study is presented demonstrating that explainable biomarkers through machine learning can distinguish between glomerular disorders at the light-microscopy level. The proposed system used image analysis techniques and extracted 233 explainable biomarkers related to color, morphology, and microstructural texture. Traditional machine learning was then used to classify minimal change disease (MCD), membranous nephropathy (MN), and thin basement membrane nephropathy (TBMN) diseases on a glomerular and patient-level basis. The final model combined the Gini feature importance set and linear discriminant analysis classifier. Six morphologic (nuclei-to-glomerular tuft area, nuclei-to-glomerular area, glomerular tuft thickness greater than ten, glomerular tuft thickness greater than three, total glomerular tuft thickness, and glomerular circularity) and four microstructural texture features (luminal contrast using wavelets, nuclei energy using wavelets, nuclei variance using color vector LBP, and glomerular correlation using GLCM) were, together, the best performing biomarkers. Accuracies of 77% and 87% were obtained for glomerular and patient-level classification, respectively. Computational methods, using explainable glomerular biomarkers, have diagnostic value and are compatible with our existing knowledge of disease pathogenesis. Furthermore, this algorithm can be applied to clinical datasets for novel prognostic and mechanistic biomarker discovery.
病理学家使用多种显微镜模式来评估肾活检标本。除了通常的诊断特征外,一些变化过于细微,无法正确定义。计算方法有可能系统地定量亚视觉线索,提供发病机制的见解,并与临床结果联系起来。为此,提出了一项原理验证研究,证明通过机器学习可以区分肾小球疾病在光镜水平上的解释性生物标志物。所提出的系统使用图像分析技术提取了 233 个与颜色、形态和微观结构纹理相关的可解释生物标志物。然后,传统的机器学习用于对肾小球和患者水平上的微小变化疾病(MCD)、膜性肾病(MN)和薄基底膜肾病(TBMN)疾病进行分类。最终模型结合了基尼特征重要性集和线性判别分析分类器。六个形态学(核-肾小球丛面积、核-肾小球面积、肾小球丛厚度大于 10、肾小球丛厚度大于 3、总肾小球丛厚度和肾小球圆形度)和四个微观结构纹理特征(使用小波的管腔对比度、使用小波的核能量、使用颜色向量 LBP 的核方差和使用 GLCM 的肾小球相关性)共同构成了表现最佳的生物标志物。肾小球和患者水平分类的准确率分别为 77%和 87%。使用可解释肾小球生物标志物的计算方法具有诊断价值,并且与我们对疾病发病机制的现有知识兼容。此外,该算法可应用于临床数据集,以发现新的预后和机制生物标志物。