Suppr超能文献

癌症研究的图像分析资源:用于可视化、分析和管理的PIIP-病理学图像信息学平台。

An Image Analysis Resource for Cancer Research: PIIP-Pathology Image Informatics Platform for Visualization, Analysis, and Management.

作者信息

Martel Anne L, Hosseinzadeh Dan, Senaras Caglar, Zhou Yu, Yazdanpanah Azadeh, Shojaii Rushin, Patterson Emily S, Madabhushi Anant, Gurcan Metin N

机构信息

Sunnybrook Research Institute, Toronto, Canada.

Medical Biophysics, University of Toronto, Toronto, Canada.

出版信息

Cancer Res. 2017 Nov 1;77(21):e83-e86. doi: 10.1158/0008-5472.CAN-17-0323.

Abstract

Pathology Image Informatics Platform (PIIP) is an NCI/NIH sponsored project intended for managing, annotating, sharing, and quantitatively analyzing digital pathology imaging data. It expands on an existing, freely available pathology image viewer, Sedeen. The goal of this project is to develop and embed some commonly used image analysis applications into the Sedeen viewer to create a freely available resource for the digital pathology and cancer research communities. Thus far, new plugins have been developed and incorporated into the platform for out of focus detection, region of interest transformation, and IHC slide analysis. Our biomarker quantification and nuclear segmentation algorithms, written in MATLAB, have also been integrated into the viewer. This article describes the viewing software and the mechanism to extend functionality by plugins, brief descriptions of which are provided as examples, to guide users who want to use this platform. PIIP project materials, including a video describing its usage and applications, and links for the Sedeen Viewer, plug-ins, and user manuals are freely available through the project web page: http://pathiip.org .

摘要

病理图像信息学平台(PIIP)是一项由美国国家癌症研究所/美国国立卫生研究院赞助的项目,旨在管理、注释、共享和定量分析数字病理成像数据。它是在现有的免费病理图像查看器Sedeen的基础上进行扩展的。该项目的目标是开发一些常用的图像分析应用程序并将其嵌入到Sedeen查看器中,为数字病理和癌症研究社区创建一个免费资源。到目前为止,已经开发了新的插件并将其纳入该平台,用于散焦检测、感兴趣区域转换和免疫组化切片分析。我们用MATLAB编写的生物标志物定量和细胞核分割算法也已集成到查看器中。本文介绍了该查看软件以及通过插件扩展功能的机制,并提供了简要描述作为示例,以指导想要使用该平台的用户。PIIP项目材料,包括描述其用法和应用的视频,以及Sedeen查看器、插件和用户手册的链接,可通过项目网页:http://pathiip.org免费获取。

相似文献

6
MLCD: A Unified Software Package for Cancer Diagnosis.MLCD:用于癌症诊断的统一软件包。
JCO Clin Cancer Inform. 2020 Mar;4:290-298. doi: 10.1200/CCI.19.00129.
7
Polymorph segmentation representation for medical image computing.多态分割表示在医学图像计算中的应用。
Comput Methods Programs Biomed. 2019 Apr;171:19-26. doi: 10.1016/j.cmpb.2019.02.011. Epub 2019 Feb 21.
9
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.基于分割深度学习算法的病理学图像分析。
Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.

引用本文的文献

1
Informatics at the Frontier of Cancer Research.癌症研究前沿的信息学
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
3
Machine learning in renal pathology.肾脏病理学中的机器学习
Front Nephrol. 2022 Nov 29;2:1007002. doi: 10.3389/fneph.2022.1007002. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验