Suppr超能文献

具有多靶点作用模式的潜在新型抗新冠病毒药物的计算研究

Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action.

作者信息

Mohapatra Ranjan K, Azam Mohammad, Mohapatra Pranab K, Sarangi Ashish K, Abdalla Mohnad, Perekhoda Lina, Yadav Oval, Al-Resayes Saud I, Jong-Doo Kim, Dhama Kuldeep, Ansari Azaj, Seidel Veronique, Verma Sarika, Raval Mukesh K

机构信息

Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002, India.

Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia.

出版信息

J King Saud Univ Sci. 2022 Jul;34(5):102086. doi: 10.1016/j.jksus.2022.102086. Epub 2022 May 13.

Abstract

A compound that could inhibit multiple targets associated with SARS-CoV-2 infection would prove to be a drug of choice against the virus. Human receptor-ACE2, receptor binding domain (RBD) of SARS-CoV-2 S-protein, Papain-like protein of SARS-CoV-2 (PLpro), reverse transcriptase of SARS-CoV-2 (RdRp) were chosen for in silico study. A set of previously synthesized compounds (-) were docked into the active sites of the targets. Based on the docking score, ligand efficiency, binding free energy, and dissociation constants for a definite conformational position of the ligand, inhibitory potentials of the compounds were measured. The stability of the protein-ligand (P-L) complex was validated by using molecular dynamics simulations using the YASARA suit. Moreover, the pharmacokinetic properties, FMO and NBO analysis were performed for ranking the potentiality of the compounds as drug. The geometry optimizations and electronic structures were investigated using DFT. As per the study, compound- has the best binding affinity against all four targets. Moreover, compounds 1, 3 and 5 are less toxic and can be considered for oral consumption.

摘要

一种能够抑制与SARS-CoV-2感染相关的多个靶点的化合物将被证明是对抗该病毒的首选药物。选择人类受体血管紧张素转换酶2(ACE2)、SARS-CoV-2刺突蛋白的受体结合域(RBD)、SARS-CoV-2的木瓜样蛋白酶(PLpro)、SARS-CoV-2的逆转录酶(RdRp)进行计算机模拟研究。将一组先前合成的化合物对接至靶点的活性位点。基于对接分数、配体效率、结合自由能以及配体特定构象位置的解离常数,测定化合物的抑制潜力。使用YASARA软件通过分子动力学模拟验证蛋白质-配体(P-L)复合物的稳定性。此外,进行药代动力学性质、前线分子轨道(FMO)和自然键轨道(NBO)分析以对化合物作为药物的潜力进行排名。使用密度泛函理论(DFT)研究几何优化和电子结构。根据该研究,化合物对所有四个靶点具有最佳的结合亲和力。此外,化合物1、3和5毒性较小,可考虑口服。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40e/9101701/9be941aaa2db/gr1_lrg.jpg

相似文献

1
Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action.
J King Saud Univ Sci. 2022 Jul;34(5):102086. doi: 10.1016/j.jksus.2022.102086. Epub 2022 May 13.
6
The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study.
Comput Biol Med. 2021 Jul;134:104464. doi: 10.1016/j.compbiomed.2021.104464. Epub 2021 May 10.
7
In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19.
Comput Biol Med. 2020 Sep;124:103936. doi: 10.1016/j.compbiomed.2020.103936. Epub 2020 Jul 28.
8
Plant derived active compounds as potential anti SARS-CoV-2 agents: an study.
J Biomol Struct Dyn. 2022;40(21):10629-10650. doi: 10.1080/07391102.2021.1947384. Epub 2021 Jul 6.

引用本文的文献

1
High-performance corrosion inhibitors for carbon steel in hydrochloric acid: electrochemical and DFT studies.
RSC Adv. 2025 Aug 13;15(35):28666-28688. doi: 10.1039/d5ra04952k. eCollection 2025 Aug 11.
4
JN. 1 and cardiac-related clinical manifestations: a current public health concern.
Front Cardiovasc Med. 2024 Dec 9;11:1488226. doi: 10.3389/fcvm.2024.1488226. eCollection 2024.
8
Ethnomedicinal values of L. as a panacea against multiple human ailments: a state of art review.
Front Chem. 2023 Nov 14;11:1297300. doi: 10.3389/fchem.2023.1297300. eCollection 2023.
10
Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach.
J Mol Model. 2023 Mar 27;29(4):113. doi: 10.1007/s00894-023-05521-8.

本文引用的文献

1
Challenges of the Omicron (B.1.1.529) Variant and Its Lineages: A Global Perspective.
Chembiochem. 2022 May 4;23(9):e202200059. doi: 10.1002/cbic.202200059. Epub 2022 Mar 23.
2
SARS-CoV-2 and its variants of concern including Omicron: A never ending pandemic.
Chem Biol Drug Des. 2022 May;99(5):769-788. doi: 10.1111/cbdd.14035. Epub 2022 Mar 8.
3
Oral antivirals for the prevention and treatment of SARS-CoV-2 infection.
AIDS Rev. 2022 Mar 1;24(1):41-49. doi: 10.24875/AIDSRev.22000001.
4
screening and covalent binding of phytochemicals of against SARS-CoV-2 (COVID 19) main protease.
J Biomol Struct Dyn. 2023 Feb;41(2):435-444. doi: 10.1080/07391102.2021.2007170. Epub 2021 Nov 25.
6
COVID-19, WHO guidelines, pedagogy, and respite.
Open Med (Wars). 2021 Mar 29;16(1):491-493. doi: 10.1515/med-2021-0266. eCollection 2021.
7
COVID-19 vaccination campaign in Nepal, emerging UK variant and futuristic vaccination strategies to combat the ongoing pandemic.
Travel Med Infect Dis. 2021 May-Jun;41:102037. doi: 10.1016/j.tmaid.2021.102037. Epub 2021 Mar 27.
8
India's crusade against COVID-19.
Nat Immunol. 2021 Mar;22(3):258-259. doi: 10.1038/s41590-021-00876-7.
9
India begins COVID-19 vaccination amid trial allegations.
Lancet. 2021 Jan 23;397(10271):264. doi: 10.1016/S0140-6736(21)00145-8.
10
Could new COVID variants undermine vaccines? Labs scramble to find out.
Nature. 2021 Jan;589(7841):177-178. doi: 10.1038/d41586-021-00031-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验