Suppr超能文献

贝叶斯推断在肌腱变形的微观结构、超弹性模型上的应用。

Bayesian inference on a microstructural, hyperelastic model of tendon deformation.

机构信息

Department of Mathematics, University of Manchester, Manchester M13 9PL, UK.

Department of Materials, University of Manchester, Manchester M13 9PL, UK.

出版信息

J R Soc Interface. 2022 May;19(190):20220031. doi: 10.1098/rsif.2022.0031. Epub 2022 May 18.

Abstract

Microstructural models of soft-tissue deformation are important in applications including artificial tissue design and surgical planning. The basis of these models, and their advantage over their phenomenological counterparts, is that they incorporate parameters that are directly linked to the tissue's microscale structure and constitutive behaviour and can therefore be used to predict the effects of structural changes to the tissue. Although studies have attempted to determine such parameters using diverse, state-of-the-art, experimental techniques, values ranging over several orders of magnitude have been reported, leading to uncertainty in the true parameter values and creating a need for models that can handle such uncertainty. We derive a new microstructural, hyperelastic model for transversely isotropic soft tissues and use it to model the mechanical behaviour of tendons. To account for parameter uncertainty, we employ a Bayesian approach and apply an adaptive Markov chain Monte Carlo algorithm to determine posterior probability distributions for the model parameters. The obtained posterior distributions are consistent with parameter measurements previously reported and enable us to quantify the uncertainty in their values for each tendon sample that was modelled. This approach could serve as a prototype for quantifying parameter uncertainty in other soft tissues.

摘要

软组织变形的微观结构模型在包括人工组织设计和手术规划在内的应用中非常重要。这些模型的基础及其优于现象学模型的优势在于,它们包含与组织的微观结构和本构行为直接相关的参数,因此可以用于预测组织结构变化对组织的影响。尽管已经有研究试图使用各种最先进的实验技术来确定这些参数,但已经报道了跨越几个数量级的范围值,这导致了真正参数值的不确定性,并需要能够处理这种不确定性的模型。我们推导出一种用于各向异性软组织的新微观超弹性模型,并将其用于模拟肌腱的力学行为。为了考虑参数不确定性,我们采用贝叶斯方法,并应用自适应马尔可夫链蒙特卡罗算法来确定模型参数的后验概率分布。得到的后验分布与先前报道的参数测量值一致,使我们能够量化为每个建模的肌腱样本参数值的不确定性。这种方法可以作为量化其他软组织中参数不确定性的原型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13b6/9114946/cd2dc9e82cdd/rsif20220031f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验