Suppr超能文献

利用 CRISPR-Cpf1 系统在艰难梭菌中进行高效基因组编辑。

Highly Efficient Genome Editing in Clostridium difficile Using the CRISPR-Cpf1 System.

机构信息

Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou, China.

Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China.

出版信息

Methods Mol Biol. 2022;2479:175-187. doi: 10.1007/978-1-0716-2233-9_12.

Abstract

Clostridium difficile is often the primary cause of nosocomial diarrhea, leading to thousands of deaths annually worldwide. The availability of an efficient genome editing tool for C. difficile is essential to understanding its pathogenic mechanism and physiological behavior. Here, we describe a streamlined CRISPR-Cpf1-based protocol to achieve precise genome editing in C. difficile with high efficiencies. Our work highlighted the first application of CRISPR-Cpf1 for genome editing in C. difficile, which are both crucial for understanding pathogenic mechanism of C. difficile and developing strategies to fight against C. difficile infection (CDI). In addition, for the DNA cloning, we developed a one-step-assembly protocol along with a Python-based algorithm for automatic primer design, shortening the time for plasmid construction to half that of conventional procedures. Approaches we developed herein are easily and broadly applicable to other microorganisms. Our results provide valuable guidance for establishing CRISPR-Cpf1 as a versatile genome engineering tool in prokaryotic cells.

摘要

艰难梭菌通常是医院获得性腹泻的主要原因,每年在全球导致数千人死亡。拥有一种有效的艰难梭菌基因组编辑工具对于了解其致病机制和生理行为至关重要。在这里,我们描述了一种简化的基于 CRISPR-Cpf1 的方案,可实现艰难梭菌的精确基因组编辑,效率很高。我们的工作突出了 CRISPR-Cpf1 在艰难梭菌中的首次基因组编辑应用,这对于了解艰难梭菌的致病机制和开发对抗艰难梭菌感染(CDI)的策略都至关重要。此外,对于 DNA 克隆,我们开发了一种一步法组装方案,以及一个基于 Python 的自动引物设计算法,将质粒构建时间缩短到传统方法的一半。我们开发的方法易于广泛应用于其他微生物。我们的结果为将 CRISPR-Cpf1 确立为原核细胞中一种通用的基因组工程工具提供了有价值的指导。

相似文献

1
Highly Efficient Genome Editing in Clostridium difficile Using the CRISPR-Cpf1 System.
Methods Mol Biol. 2022;2479:175-187. doi: 10.1007/978-1-0716-2233-9_12.
3
Genome engineering of Clostridium difficile using the CRISPR-Cas9 system.
Clin Microbiol Infect. 2018 Oct;24(10):1095-1099. doi: 10.1016/j.cmi.2018.03.026. Epub 2018 Mar 29.
4
5
Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
J Biotechnol. 2018 Oct 20;284:27-30. doi: 10.1016/j.jbiotec.2018.07.040. Epub 2018 Aug 4.
6
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
Nat Commun. 2017 May 4;8:15179. doi: 10.1038/ncomms15179.
7
Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
J Ind Microbiol Biotechnol. 2020 Aug;47(8):599-608. doi: 10.1007/s10295-020-02304-5. Epub 2020 Sep 2.
8
CRISPR-Cpf1 system and its applications in animal genome editing.
Mol Genet Genomics. 2024 Aug 1;299(1):75. doi: 10.1007/s00438-024-02166-x.
10
CRISPR-Cpf1: A New Tool for Plant Genome Editing.
Trends Plant Sci. 2017 Jul;22(7):550-553. doi: 10.1016/j.tplants.2017.05.001. Epub 2017 May 19.

引用本文的文献

1
Recent application of CRISPR-Cas12 and OMEGA system for genome editing.
Mol Ther. 2024 Jan 3;32(1):32-43. doi: 10.1016/j.ymthe.2023.11.013. Epub 2023 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验