School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA.
Microb Genom. 2022 May;8(5). doi: 10.1099/mgen.0.000822.
Early disease detection is a prerequisite for enacting effective interventions for disease control. Strains of the bacterial plant pathogen have recurrently spread to new crops in new countries causing devastating outbreaks. So far, investigation of outbreak strains and highly resolved phylogenetic reconstruction have required whole-genome sequencing of pure bacterial cultures, which are challenging to obtain due to the fastidious nature of . Here, we show that culture-independent metagenomic sequencing, using the Oxford Nanopore Technologies MinION long-read sequencer, can sensitively and specifically detect the causative agent of Pierce's disease of grapevine, subspecies . Using a DNA sample from a grapevine in Virginia, USA, it was possible to obtain a metagenome-assembled genome (MAG) of sufficient quality for phylogenetic reconstruction with SNP resolution. The analysis placed the MAG in a clade with isolates from Georgia, USA, suggesting introduction of subspecies to Virginia from the south-eastern USA. This proof of concept study, thus, revealed that metagenomic sequencing can replace culture-dependent genome sequencing for reconstructing transmission routes of bacterial plant pathogens.
早期疾病检测是实施疾病控制有效干预的前提。细菌植物病原体 的菌株反复传播到新的国家的新作物中,导致毁灭性的疫情爆发。到目前为止,对疫情菌株的调查和高度解析的系统发育重建都需要对纯细菌培养物进行全基因组测序,由于 的复杂性,这是具有挑战性的。在这里,我们表明,使用 Oxford Nanopore Technologies MinION 长读测序仪的非培养宏基因组测序可以灵敏和特异地检测葡萄藤皮尔逊氏病的病原体 亚种 。使用来自美国弗吉尼亚州的葡萄藤的 DNA 样本,有可能获得足够质量的用于 SNP 分辨率的系统发育重建的宏基因组组装基因组(MAG)。该分析将 MAG 置于与来自美国佐治亚州的分离株处于同一进化枝中,表明 亚种 从美国东南部引入弗吉尼亚州。因此,这项概念验证研究表明,宏基因组测序可以替代依赖于培养的基因组测序,用于重建细菌植物病原体的传播途径。