Suppr超能文献

Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering.

作者信息

Zhu Pengfei, Li Jialu, Wang Yu, Xiao Bin, Zhao Shuai, Hu Qinghua

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10851-10863. doi: 10.1109/TNNLS.2022.3171583. Epub 2023 Nov 30.

Abstract

Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验