IEEE Trans Med Imaging. 2022 Nov;41(11):3029-3038. doi: 10.1109/TMI.2022.3176002. Epub 2022 Oct 27.
Image reconstruction for positron emission tomography (PET) is challenging because of the ill-conditioned tomographic problem and low counting statistics. Kernel methods address this challenge by using kernel representation to incorporate image prior information in the forward model of iterative PET image reconstruction. Existing kernel methods construct the kernels commonly using an empirical process, which may lead to unsatisfactory performance. In this paper, we describe the equivalence between the kernel representation and a trainable neural network model. A deep kernel method is then proposed by exploiting a deep neural network to enable automated learning of an improved kernel model and is directly applicable to single subjects in dynamic PET. The training process utilizes available image prior data to form a set of robust kernels in an optimized way rather than empirically. The results from computer simulations and a real patient dataset demonstrate that the proposed deep kernel method can outperform the existing kernel method and neural network method for dynamic PET image reconstruction.
正电子发射断层成像(PET)的图像重建具有挑战性,因为层析成像问题的条件不佳且计数统计数据较低。核方法通过使用核表示将图像先验信息纳入迭代 PET 图像重建的正向模型来应对这一挑战。现有的核方法通常使用经验过程构建核,这可能导致性能不佳。在本文中,我们描述了核表示与可训练神经网络模型之间的等价性。然后,通过利用深度神经网络提出了一种深度核方法,以实现改进的核模型的自动学习,并可直接应用于动态 PET 中的单个对象。训练过程利用可用的图像先验数据以优化的方式形成一组稳健的核,而不是通过经验形成。计算机模拟和真实患者数据集的结果表明,所提出的深度核方法在动态 PET 图像重建方面可以优于现有的核方法和神经网络方法。