Suppr超能文献

一种用于无监督 PET 图像的迭代重建算法。

An iterative reconstruction algorithm for unsupervised PET image.

机构信息

Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.

College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.

出版信息

Phys Med Biol. 2024 Feb 27;69(5). doi: 10.1088/1361-6560/ad2882.

Abstract

In recent years, convolutional neural networks (CNNs) have shown great potential in positron emission tomography (PET) image reconstruction. However, most of them rely on many low-quality and high-quality reference PET image pairs for training, which are not always feasible in clinical practice. On the other hand, many works improve the quality of PET image reconstruction by adding explicit regularization or optimizing the network structure, which may lead to complex optimization problems.In this paper, we develop a novel iterative reconstruction algorithm by integrating the deep image prior (DIP) framework, which only needs the prior information (e.g. MRI) and sinogram data of patients. To be specific, we construct the objective function as a constrained optimization problem and utilize the existing PET image reconstruction packages to streamline calculations. Moreover, to further improve both the reconstruction quality and speed, we introduce the Nesterov's acceleration part and the restart mechanism in each iteration.2D experiments on PET data sets based on computer simulations and real patients demonstrate that our proposed algorithm can outperform existing MLEM-GF, KEM and DIPRecon methods.Unlike traditional CNN methods, the proposed algorithm does not rely on large data sets, but only leverages inter-patient information. Furthermore, we enhance reconstruction performance by optimizing the iterative algorithm. Notably, the proposed method does not require much modification of the basic algorithm, allowing for easy integration into standard implementations.

摘要

近年来,卷积神经网络(CNN)在正电子发射断层扫描(PET)图像重建中显示出巨大的潜力。然而,它们中的大多数都依赖于许多低质量和高质量的参考 PET 图像对进行训练,这在临床实践中并不总是可行的。另一方面,许多工作通过添加显式正则化或优化网络结构来提高 PET 图像重建的质量,这可能会导致复杂的优化问题。在本文中,我们通过整合深度图像先验(DIP)框架开发了一种新颖的迭代重建算法,该算法仅需要患者的先验信息(例如 MRI)和正弦图数据。具体来说,我们将目标函数构建为约束优化问题,并利用现有的 PET 图像重建包来简化计算。此外,为了进一步提高重建质量和速度,我们在每次迭代中引入了 Nesterov 的加速部分和重启机制。基于计算机模拟和真实患者的 PET 数据集的 2D 实验表明,我们提出的算法可以优于现有的 MLEM-GF、KEM 和 DIPRecon 方法。与传统的 CNN 方法不同,所提出的算法不依赖于大型数据集,而是仅利用患者之间的信息。此外,我们通过优化迭代算法来增强重建性能。值得注意的是,所提出的方法不需要对基本算法进行太多修改,因此可以轻松集成到标准实现中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验