Kang Y G, Nemoto E M, Bleyaert A L, Winter P M, Eidelman B H, Taylor F H
J Cereb Blood Flow Metab. 1987 Apr;7(2):230-6. doi: 10.1038/jcbfm.1987.48.
We hypothesized that when the depth of ether anesthesia is increased from 2 to 5%, cerebral vessels dilate secondary to circulating catecholamine stimulation of cerebral metabolism. Cerebral blood flow (CBF) by 133Xe clearance and cerebral metabolic rate for oxygen (CMRO2) were measured on 2% and then 5% ether in air in two groups of seven monkeys each during mechanical ventilation. Propranolol, 0.5 mg/kg i.v., was infused over 5 min in one group, and the other received saline. All measurements were repeated on 5% and 2% ether. Cerebrovascular resistance (CVR) fell by 30%, from 2.28 +/- 0.61 (mean +/- SD) to 1.51 +/- 0.28 mm Hg ml-1 100 g-1 min-1 (p less than 0.01), with the increase in ether from 2 to 5%. CBF and CMRO2 were unaltered from values of about 45 ml 100 g-1 min-1 and 2.3 ml 100 g-1 min-1, respectively. During 5% ether anesthesia, propranolol had no effect on CBF, CMRO2, or CVR. On 2% ether, it increased CVR twofold, from 1.5 +/- 0.30 to 3.0 +/- 1.0 mm Hg ml-1 100 g-1 min-1, and decreased CBF by 33%, from 48 +/- 8 to 32 +/- 10 ml 100 g-1 min-1. Plasma epinephrine was two-fold higher on 2% compared to 5% ether, both before and after saline or propranolol infusion. In monkeys, cerebrovascular dilation by ether at 5% compared to 2% is not secondary to catecholamine stimulation of CMRO2. It may result from a direct effect of either plasma catecholamines or ether on the cerebrovasculature.